
Advanced Computer Graphics
Boundary Representations
for Graphical Models

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

The Problem

!  How to store objects in versatile and efficient data structures?

!  Definition Boundary-Representation (B-Rep):
Objects "consist" of

1.  Triangles, quadrangles, and polygons, i.e., geometry; and

2.  Incidence and adjacency relationships, i.e., connectivity ("topology")

!  By contrast, there are also representations that try to model the
volume directly, or that consist only of individual points

G. Zachmann 4 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Definitions: Graphs

!  A graph is a pair G=(V, E), where V = {v0,v1,…,vn-1} is a non-empty
set of n different nodes (points, vertices) and E is a set of edges
(vi, vj)

!  When V is a (discrete) subset of with d ≥ 2, then G = (V, E) is
called a geometric graph

!  Two edges/nodes are called neighboring or adjacent, iff they
share a common node/edge

!  If e = (vi, vj) is an edge in G, then e and vi are called incident (dito
for e und vj ; vi and vj are called neighboring or adjacent)

!  In the following, edges will be undirected edges, and
consequently we will denote them just by vivj

!  The degree of a node/vertex := number of incident edges

Rd

G. Zachmann 5 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Polygons

!  A polygon is a geometric graph P = (V, E), where
V = {v0,v1,…,vn-1} ⊂ , d ≥ 2, and E = { (v0,v1), …, (vn-1, v0) }

!  Nodes are called vertices (sometimes points or corners)

!  A polygon is called

!  flat, if all vertices lie in the same plane;

!  simple, if it is flat and if the intersection of every two edges in E is either
empty or a vertex in V, and if every vertex is incident to exactly two
edges (i.e., if the polygon does not have self intersections).

!  By definition, we will consider only closed polygons

v0 v1
v2

v4
v5 v6

v3

Rd

G. Zachmann 6 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Mesh (Polygonal Mesh)

!  Let M be a set of closed, simple polygons Pi ;
 let

!  M is called a mesh iff

!  the intersection of two polygons in M is either empty, a
point v ∈ V , or an edge e ∈ E ; and

!  each edge e ∈ E belongs to at least one polygon
(no dangling edges)

!  The set of all edges, belonging to one polygon only,
is called the border of the mesh

!  A mesh with no border is called a closed mesh

!  The set of all points V and edges E of a mesh
constitute a graph, too

V =
S

i Vi E =
S

i Ei

G. Zachmann 7 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

First Explicit Application of a Mesh for a Music Video

Kraftwerk: Musique non stop, 1986. Music video by Rebecca Allen.

G. Zachmann 8 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Definition: Polyhedron

!  A mesh is called polyhedron, if

1.  each edge e ∈ E is incident to exactly two polygons (i.e., the mesh is
closed); and

2.  no subset of the mesh fulfills condition #1.

!  The polygons are also called facets / faces (Facetten)

!  Theorem (w/o proof):
Each polyhedron P partitions space into three subsets: its surface,
its interior, and its exterior.

OK Nö Nö

G. Zachmann 9 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

The Most Naive Data Structure for Meshes

! Array of polygons; each polygon = array of vertices

! Example:

!  Problems:

!  Vertices occurr several times!

- Waste of memory, problems with animations, …

! How to find all faces, incident to a given vertex?

! Different array sizes for polygons with different numbers of vertices

face[0] =
x0 y0 z0

x1 y1 z1

x5 y5 z5

x4 y4 z4

face[1] =
x0 y0 z0

x4 y4 z4

x7 y7 z7

x3 y3 z3 v0 v1

v2

v4 v5

v6 v7

v3

f0

face[2] =
x4 y4 z4

x5 y5 z5

x6 y6 z6

x7 y7 z7

. . .

G. Zachmann 10 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Orientation

!  Each facet of a mesh can be oriented by the
definition of a vertex order
!  Each facet can have exactly two orientations

!  Two adjacent facets have the same
orientation, if the common edge is traversed
in opposite directions, when the two facets
are traversed according to their orientation

!  The orientation determines the surface
normal of a facet. By convention, it is
obtained using the right-hand-rule

0 1

2

6
5 4

3

7

+

0 1

2

6
5 4

7

3 -

G. Zachmann 11 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  A mesh is called orientable, if all facets can be oriented such that
every two adjacent facets have the same orientation
!  The mesh is called oriented, if all facets actually do have the same

orientation

!  A mesh is called non-orientable, if there are
always two adjacent facets that have
opposite orientation, no matter
how the orientation of all facets is chosen

!  Theorems (w/o proof):

!  Each non-orientable surface that is embedded in
three-dimensional space and closed must have
a self-intersection

!  The surface of a polyhedron is always orientable

G. Zachmann 12 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Digression: the Möbius Strip in the Arts

Möbius Strip II, woodcut, 1963 Interlocked Gears,
Michael Trott, 2001

Max Bill

G. Zachmann 13 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Is the Escher Knot an Orientable Mesh or Not?

http://homepages.sover.net/~tlongtin

G. Zachmann 15 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Definition: Homeomorphism

!  Homeomorphism = bijective, continuous mapping between two
"objects" (e.g. surfaces), the inverse mapping of which must be
continuous too

!  Two objects are called homeomorph iff there is a homeomorphism
between the two

!  Note: don't confuse this with homomorphism or homotopy!

!  Illustration:

!  Squishing, stretching, twisting is allowed

! Making holes is not allowed

!  Cutting is allowed only, if the object is glued together afterwards at
exactly the same place

G. Zachmann 16 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Homeomorph objects are also called
topologically equivalent

!  Examples:
!  Disc and square

!  Cup and torus

!  An object and its mirror object

!  Trefoil knot and ?

!  The border of the Möbius strip and ... ?

!  All convex polyhedra are
homeomorphic to a sphere
! Many non-convex ones are topologically

equivalent to the sphere, too

Trefoil knot

G. Zachmann 17 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Two-Manifolds (Zwei-Mannigfaltigkeiten)

!  Definition: a surface is called two-manifold, iff for each point on
the surface there is an open ball such that the intersection of the
ball and the surface is topologically equivalent to a two-
dimensional disc

!  Examples:

!  Notice: in computer graphics, often the term "manifold" is used
when 2-manifold is meant!

!  The term "piecewise linear manifold" is sometimes used by
people, to denote just a mesh …

G. Zachmann 18 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

The Indexed Face Set

!  Idea: common "vertex pool" (shared vertices)

!  Example:

!  Advantage: significant memory savings

!  1 vertex = 1 point + 1 vector (v.-normal) + uv-texture coord. = 32 bytes

!  1 index = 1 integer = 4 bytes

!  Deformable objects / animations are mcuch easier

!  Probably the most common data structure

vertices =
x0 y0 z0

x1 y1 z1

x2 y2 z2

x3 y3 z3

. . .

face vertex index
0 0, 1, 5, 4
1 0, 3, 7, 4
2 4, 5, 6, 7

. . .
v0 v1

v2

v4 v5

v6 v7

v3

f0

G. Zachmann 19 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

The OBJ File Format

!  OBJ = indexed face set + further features

!  Line based ASCII format

1.  Ordered list of vertices:

!  Introduced by "v" on the line

!  Spatial coordinates x, y, z

!  Index is given by the order in the file

2.  Unordered list of polygons:

!  A polygon is introduced by "f"

!  Then, ordered list of vertex indices

!  Length of list = # of edges

! Orientation is given by order of vertices

!  In principle, "v" and "f" can be mixed
arbitrarily

v x0 y0 z0

v x1 y1 z1

v x2 y2 z2

v x3 y3 z3

f 0 1 2
f 1 3 2

(x0,y0,z0) (x1,y1,z1)

(x2,y2,z2) (x3,y3,z3)

G. Zachmann 20 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

More Attributes

!  Vertex normals:
!  prefix"vn"
!  contains x, y, z for the normalen
!  not necessarily normalized
!  not necessarily in the same in the

same order as the vertices
!  indizes similar to vertex indices

!  Texture coordinates:
!  prefix "vt"
!  not necessarily in the same in the

same order as the vertices
!  Contains u,v texture coordinates

!  Polygons:
!  use "/" as delimiter for the indices
!  vertex / normal / texture
!  normal and texture are optional
!  use "//" to omit normls, if only

texture coords are given

v x0 y0 z0
v x1 y1 z1
v x2 y2 z2

vn a0 b0 c0
vn a1 b1 c1
vn a2 b2 c2

vt u0 v0
vt u1 v1
vt u2 v2

f 0/0/0 …
f …

(x0,y0,z0)
 (a0,b0,c0)

 (u0,v0)

(x1,y1,z1)
(a1,b1,c1)

(u1,v1)

(x2,y2,z2)
(a2,b2,c2)

(u2,v2)

f 0/0/0 1/1/1 2/2/2 f 0/1/0 1/1/1 2/1/2

G. Zachmann 21 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Problems:

!  Edges are (implicitly) stored two times

!  Still no adjacency information (no "topology")

!  Consequence:

!  Finding all facets incident to a given vertex takes time O(), where

n = # vertices of the mesh

!  Dito for finding all vertices adjacent to another given vertex

!  A complete mesh traversal takes time O(n2)

-  With a mesh traversal you can, for instance, test whether an object is closed

-  Can be depth-first or breadth-first

n

G. Zachmann 22 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Examples Where Adjacency Information is Needed

!  Computing vertex normals

!  Editing meshes

!  Simulation, e.g., mass-spring systems

p0
n1 n4

n3
n2

v

nv

G. Zachmann 23 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Example Application: Simplification

!  Simplification: Generate a coarse mesh from a fine mesh

! While maintaining certain critera (will not be discussed further here)

!  Elementary operations:

!  Edge collapse:

-  All edges adjacent to the edge are required

!  Vertex removal:

-  All edges incident to the vertex are needed

G. Zachmann 24 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

All Possible Connectivity Relationships

 Given Looking for notation
 ("all neighbours ..")

1 Vertex Vertices V � V

2 Vertex Edges V � E

3 Vertex Faces V � F

4 Edge Vertices E � V

5 Edge Edges E � E

6 Edge Faces E � F

7 Face Vertices F � V

8 Face Edges F � E

9 Face Faces F � F

Abstract notation of a data structure with
all connectivity relationships:
arrows show the incidence/adjacency info

VV VF VE

EV EF EE

FV FF FE

V F

E

G. Zachmann 25 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Example: the Indexed Face Set

!  Question: What is the minimal data structure, that can answer all
neighboring queries in time O(1)?

vertices
x0 y0 z0

x1 y1 z1

x2 y2 z2

x3 y3 z3

. . .

face vertex index
0 0, 1, 5, 4
1 0, 3, 7, 4
2 4, 5, 6, 7

. . .
= V F

E

G. Zachmann 26 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

The Winged-Edge Data Structure

!  Idea: edge-based data structure (in contrast to face-based)

!  Observations:

!  An edge stores two indices to 2 vertices: e.org , e.dest
� yields an orientation of the edge

!  In a closed polyhedron, each edge is incident to exactly 2 facets

!  If it is oriented, then one
of these facets has the same
orientation as the edge,
the other one is opposite

e.org

e.dest

face 2

face 1
e

Gabriel Zachmann
Optional

G. Zachmann 27 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Each edge has 4 pointers to 4 adjacent edges:

1.  e.prf = edge adjacent to e.dest and incident to right face
 (prf = "previous right face")

2.  e.nrf = edge adjacent to e.org and incident to right face
 ("next right face")

3. /4. e.nlf / e.plf = edge adjacent to e and incident to left face ("next/
previous left face")

!  Observation: if all facets
are oriented consistently,
then each edge occurs once
from org⟶dest and once
from dest⟶org

e.org

e.dest

e.prf

e.plf

e

e.nlf

e.nrf

left face

right face

Gabriel Zachmann
Optional

G. Zachmann 28 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  In addition:

!  Each edge stores one pointer to the left and right facet (e.lf, e.rf)

!  Each facet & each vertex stores one pointer to a arbitrary edge incident
to it

!  Abstract representation of the data structure:

V F

E

1, sign 2

4

2 1

Gabriel Zachmann
Optional

G. Zachmann 29 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Example

List of vertices
v coord e
0 0.0 0.0 0.0 0
1 1.0 0.0 0.0 1
2 1.0 1.0 0.0 2
3 0.0 1.0 0.0 3
4 0.0 0.0 1.0 8
5 1.0 0.0 1.0 9
6 1.0 1.0 1.0 10
7 0.0 1.0 1.0 11

List of edges
e org dest ncw nccw pcw pccw lf rf
0 v0 v1 e1 e5 e4 e3 f1 f0
1 v1 v2 e2 e6 e5 e0 f2 f0
2 v2 v3 e3 e7 e6 e1 f3 f0
3 v3 v0 e0 e4 e2 e7 f4 f0
4 v0 v4 e8 e11 e0 e3 f4 f1
5 v1 v5 e9 e8 e1 e0 f1 f2
6 v2 v6 e10 e9 e2 e1 f2 f3
7 v3 v7 e11 e10 e3 e2 f3 f4
8 v4 v5 e5 e9 e4 e11 f5 f1
9 v5 v6 e6 e10 e5 e8 f5 f2
10 v6 v7 e7 e11 e9 e6 f5 f3
11 v7 v4 e4 e8 e10 e7 f5 f4

Facets
0 e0 -
1 e8 -
2 e5 -
3 e6 -
4 e11 -
5 e8 +

f1

f3 e7

v0 v1

v2

v4 v5

v6 v7

v3

e0

e1
e2

e3

e4 e5

e6
e8

e9

e10

e11

Gabriel Zachmann
Optional

G. Zachmann 30 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Example for Traversing that Data Structure

!  Example task: enumerate all edges of f4 in CCW order:

Edge list
e org dest ncw nccw pcw pccw lf rf
0 v0 v1 e1 e5 e4 e3 f1 f0
1 v1 v2 e2 e6 e5 e0 f2 f0
2 v2 v3 e3 e7 e6 e1 f3 f0
3 v3 v0 e0 e4 e2 e7 f4 f0
4 v0 v4 e8 e11 e0 e3 f4 f1
5 v1 v5 e9 e8 e1 e0 f1 f2
6 v2 v6 e10 e9 e2 e1 f2 f3
7 v3 v7 e11 e10 e3 e2 f3 f4
8 v4 v5 e5 e9 e4 e11 f5 f1
9 v5 v6 e6 e10 e5 e8 f5 f2
10 v6 v7 e7 e11 e9 e6 f5 f3
11 v7 v4 e4 e8 e10 e7 f5 f4

f1

f3 e7

v0 v1

v2

v4 v5

v6 v7

v3

e0

e1
e2

e3

e4 e5

e6
e8

e9

e10

e11

f4 � e11 / "-" :

� pccw

v3

e7
v7

v4
e11

e3
v0

e7
v4

v7

v3

e11
Finish

v7
e11

v4

� pccw � nccw

e7

e4

v4

v7

e3
v0

v3

e11

� nccw

Gabriel Zachmann
Optional

G. Zachmann 31 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  All neighborhood/connectivity queries can be answered in
time O(k) where (k = size of the output)

!  3 kinds of queries can be answered directly in O(1),
and 6 kinds of queries can be answered by a local traversal of the
data structures around a facet or a vertex in O(k)

!  Problem: When following edges, one has to test for each edge
how it is oriented, in order to determine whether to follow
n[c]cw or p[c]cw!

Gabriel Zachmann
Optional

G. Zachmann 32 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Doubly Connected Edge List [Preparata & Müller, 1978]

!  In computer graphics rather known as "half-edge data structure"

!  Arguably the easiest and most efficient connectivity data structure

!  Idea:

!  Like the winged-edge DS, but with "split" edges

! One half-edge (= entry in the edge table) represents only one direction
and one "side" of the complete edge

!  The pointers stored with each half-edge:

-  Start (org) and end vertex (dest)

-  Incident face (on the left-hand side)

-  Next und previous edge (in traversal order)

-  (Originating vertex can be omitted,
because e.org = e.twin.dest)

e.org

e.prev

e

e.face

e.twin
e.dest

e.next

G. Zachmann 33 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Abstract notation:

!  1 or 2 pointers to vertices per edge,
epending on whether or not a pointer to
the originating vertex (org) is stored with e

!  Requires twice as many entries in the edge
table as the winged-edge DS

V F

E

1 1 (2)

2

1 1

G. Zachmann 34 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Example (Here in CW Order!)

0

V0 V1

v2

v4 v5

v6 v7

v3

12 7

6

5

3

4 8

9

15

12

13
14

11

16

17
18

19

20

10

21
22

23

Facets
0 e20
1 e4
2 e0
3 e15
4 e16
5 e8

List of Vertices
v coord e
0 0.0 0.0 0.0 0
1 1.0 0.0 0.0 1
2 1.0 1.0 0.0 2
3 0.0 1.0 0.0 3
4 0.0 0.0 1.0 4
5 1.0 0.0 1.0 9
6 1.0 1.0 1.0 13
7 0.0 1.0 1.0 16

List of Half-Edges
e org next prv twin e org next prv twin
0 0 1 3 6 12 2 13 15 10
1 1 2 0 11 13 6 14 12 22
2 2 3 1 15 14 7 15 13 19
3 3 0 2 18 15 3 12 14 2
4 4 5 7 20 16 7 17 19 21
5 5 6 4 8 17 4 18 16 7
6 1 7 5 0 18 0 19 17 3
7 0 4 6 17 19 3 16 18 14
8 1 9 11 5 20 5 21 23 4
9 5 10 8 23 21 4 22 20 16
10 6 11 9 12 22 7 23 21 13
11 2 8 10 1 23 6 20 22 9 Also note the demo on

http://www.holmes3d.net/graphics/dcel/

G. Zachmann 35 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Visualization for a quad mesh:

G. Zachmann 36 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Invariants in a DCEL

!  Here, we will use the "functional notation", i.e.,
twin(e) = e.twin

!  Invariants (= axioms in an Abstract Data Type "DCEL"):

!  twin(twin(e)) = e , if the mesh is closed

!  org(next(e)) = dest(e)

!  org(e) = dest(twin(e)) [if twin(e) is existing]

!  org(v.edge) = v [v always points to a leaving edge!]

!  etc. …

Gabriel Zachmann
Optional

G. Zachmann 37 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Face and Vertex Cycling

!  Given: a closed, 2-manifold mesh

!  Wanted: all vertices incident to a given face f

!  Algorithm:

!  Running time is in O(k) , with k = # vertices of f

f

e

e_start = f.edge
e = e_start
repeat
 output e.dest
 e = e.next
until e == e_start

G. Zachmann 38 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Task: report all vertices adjacent to a given vertex v

!  Algorithm (w.l.o.g., v points to a leaving edge):

!  Running time is in O(k) , where k = # neighbours of v

e_start ← v.edge
e ← e_start
repeat
 output e.dest
 e ← e.twin.next
until e == e_start

v

e

G. Zachmann 39 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Terminology: a feature = a vertex or an edge or a facet

!  Theorem:
A DCEL over a 2-manifold mesh supports all incidence and
adjacency queries for a given feature in time O(1) or O(k), where
k = # neighbours.

!  Crucial property:
the DCEL must be proper

C
ou

rt
ne

y
G

ib
bo

ns
 2

00
7

G. Zachmann 40 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Limitations / Extensions of the DCEL

!  A DCEL can store only meshes that are ...
1.  two-manifold and

2.  orientable, and

3.  the polygons of which do not have "holes"!

!  Extensions: lots of them, e.g. those of Hervé Brönnimann
!  For non-2-manifold vertices, store several pointers to incident edges

!  Dito for facets with holes

!  Yields several cycles of edges for such vertices/faces

Fig. 2. An illustration of (a) facets with holes, (b) outer boundary, and (c) singular vertices.

I8. If a HDS supports facets, and satisfies invariants I1–I4, then facet(h)=facet(g)
for any halfedges h, g that belong to the same boundary cycle.

2.4 Vertex and Facet Links

Even though our HDS may support vertices or facets, we may or may not want to
allocate storage from each vertex of facet to remember one (perhaps all) the incidents
halfedges. We say that a vertex-supporting HDS is source-linked if it provides a pointer
source_cycle(v) to a halfedge whose source is the vertex v, and that it is target-linked
if it provides a pointer target_cycle(v) to a halfedge whose source is the vertex v. A
facet-supporting HDS is facet-linked if it provides a pointer boundary_cycle(f) to a
halfedge on the boundary of any facet (in which case it must also provide the reverse
access facet(h) to the facet which is incident to a given halfedge h). It is possible to
envision use of both vertex- and facet-linked HDS, and non-linked HDS. The following
invariants guarantee the validity of the HDS.
I9. If a HDS supports vertices, is source-linked, and satisfies Invariants I1–I7, then

source(source_cycle(v))=v for every vertex v.
I10. If a HDS supports vertices, is target-linked, and satisfies Invariants I1–I7, then

target(target_cycle(v))=v for every vertex v.
I11. If a HDS supports facets, is facet-linked, and satisfies Invariants I1–I6 and I8,

then facet(boundary_cycle(f))=f for every facet f.

2.5 HDS with Holes in Facets and Singular Vertices

An HDS may or may not allow facets to have holes. Not having holes means that
each facet boundary consists of a single cycle; it also means that there is a one-to-
one correspondence between facets and abstract facets. In a HDS supporting holes in
facets, each facet is required to give access to a hole container.2 This container may be
global to the HDS, or contained in the facet itself. Each element of that container need
only point to a single halfedge.

In a facet with holes, one of the cycles may be distinguished and called the outer
boundary; the other holes are the inner holes. This is only meaningful for plane struc-
ture (see Figure 2(b)), where the outer boundary is distinguished by its orientation
2 The container concept is defined in the C++ STL.

G. Zachmann 43 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

A DCEL Data Structure for Non-2-Manifolds

!  Directed Edge DS: extension of half-edge DS for meshes that are
not 2-manifold at just a few extraordinary places

!  Idea:

!  Store pointers to other edges (e.next, e.prev, v.edge, f.edge) as integer
indices into the edge array

!  Use the sign of the index as a flag for additonal information

!  Interpret negative indices as pointers into additonal arrays, e.g.,

-  a list of all edges eminating from a vertex; or

-  the connected component accessible from a vertex / edge

Gabriel Zachmann
Optional

G. Zachmann 44 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Why does the conventional DCEL fail for the following example?

v

Gabriel Zachmann
Optional

G. Zachmann 52 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Combinatorial Maps

!  Remark: winged-edge and DCEL data structures are (simple)
examples of so-called combinatorial maps

!  Other combinatorial maps are:

! Quad-edge data structure (and augmented quad-edge)

! Many extensions of DCEL

!  Cell-chains, n-Gmaps
(like DCELs that can be extended to n-dimensional space)

! Many more …

Gabriel Zachmann
Optional

G. Zachmann 53 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

The Euler Equation

!  Theorem (Euler's Equation):
Let V, E, F = number of vertices, edges, faces
in a polyhedron that is homeomorph to a sphere.

 Then,

!  Examples:

V = 8
E = 12
F = 6

V = 8
E = 12+1
F = 6 +1

V = 8+1
E = 12+1+1
F = 6 +1

V � E + F = 2

G. Zachmann 54 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Proof (given by Cauchy)

!  Given: a closed mesh (Polyhedron)

!  First idea:

!  Remove one facet (yields an open mesh; the border is exactly the edge
cycle of the removed facet)

!  Stretch the mesh by pulling its border apart until it becomes a planar
graph (works only if the polyhedron is homeomorph to a sphere)

!  It remains to show:

!  Second idea: triangulate the graph (i.e., the mesh)

!  Draw diagonals in all facets with more than 3 vertices

!  For the new feature count we have

V � E + F = 1

V � � E � + F � = V � (E + 1) + (F + 1) = V � E + F

G. Zachmann 55 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  The graph has a border; triangles have 0, 1, or 2 "border edges"

!  Repeat one of the following two transformations:

!  If there is a triangle with exactly one border edge,
remove this triangle ; it follows that

!  If there is a triangle with exactly two border edges,
remove the triangle ; it follows that

!  Repeat, until only one triangle remains

!  For that triangle, the Euler equation is obviously correct

!  Because each of the above transformations did not change the value of
V-E+F, the equation is also true for the original graph, hence for the
original mesh

V � � E � + F � = V � (E � 1) + (F � 1) = V � E + F

V � � E � + F � = (V � 1)� (E � 2) + (F � 1) = V � E + F

G. Zachmann 57 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Application of Euler's Equation to Meshes

!  Euler's Equation � relationship between #triangles and
#vertices in a closed triangle mesh

!  In a closed triangle mesh,
each edge is incident to exactly 2 triangles , so

!  Plug this into Euler's equation:

!  Therefore, for large triangle meshes

3F = 2E

2 = V � 3

2
F + F ⇥ 1

2
F = V –2

F � 2V

G. Zachmann 58 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Application of Euler's Equation to the Platonic Solids

!  Definition Platonic Solid:
A convex polyhedron consisting of a number of congruent & regular
polygons, with the same number of faces meeting at each vertex.

!  Regular polygon = all sides are equal, all angles are equal

!  Theorem (Euklid):

 There are exactly five platonic solids.

G. Zachmann 59 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Proof

!  All facets have the same number of edges = n; therefore:

!  All vertices have the same number of incident edges = m;
therefore

!  Plugging this into Euler's equation:

!  Yields the following condition on m and n:

2E = nF � F =
2

n
E

2E = mV � V =
2

m
E

2 = V � E + F =
2

m
E � E +

2

n
E ⇥ 2

E
=

2

m
� 1 +

2

n

1

m
+

1

n
=

1

2
+

1

E
>

1

2

G. Zachmann 60 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Additional condition: m and n both must be ≥ 3

!  Which {m,n} fulfill these conditions:

 {3,3} {3,4} {4,3} {5,3} {3,5}

G. Zachmann 61 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Digression: Platonic Solids in the Arts

!  The platonic solids have been known at least 1000 years before
Plato in Scotland

G. Zachmann 62 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Portrait of Johannes Neudörfer and his Son
Nicolas Neufchatel, 1527—1590

Dürer: Melencolia I

G. Zachmann 65 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

The Euler Characteristic

!  Caution: the Euler equation holds only for polyhedra, that are
topologically equivalent to a sphere!

!  Examples:

!  But: the quantity V-E+F stays the same no matter how the
polyhedron is deformed (homeomorph)
� so the quantity V-E+F is a topologic invariant

Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron

V-E+F 6 - 12 + 7 = 1 12 - 24 + 12 = 0 12 - 24 + 10 = -2

G. Zachmann 66 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Definition Euler characteristic:

!  Examples:

2 0 -2

0 0 -4

� = V � E + F

G. Zachmann 67 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  The Euler characteristic is even independent of the tessellation!

Euler Poincaré Characteristic: 2/5Euler-Poincaré Characteristic: 2/5

�Euler-Poincaré characteristic Ȥ(M) = V-E+F is
independent of tessellation.

V=24, E=48, F=22
Ȥ(M) =V-E+F=-2

V=16, E=32, F=16 V=28, E=56, F=26V=16 E=36 F=20

11

V 16, E 32, F 16
Ȥ(M) =V-E+F=0

V 28, E 56, F 26
Ȥ(M) =V-E+F=-2

V 16, E 36, F 20
Ȥ(M) =V-E+F=0

V = 16
E = 32
F = 16
! = 0 = 0

V = 16
E = 36
F = 20
! = 0 = 0

V = 28
E = 56
F = 26
! = -2 = -2

V = 24
E = 48
F = 22
! = -2 = -2

G. Zachmann 68 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Theorem:
Assume we are given a closed and orientable mesh consisting of
just one shell. Then the following holds:
The Euler characteristic ! = 2, 0, -2, … � = 2, 0, -2, … �
the mesh is topologically equivalent to a sphere, a torus, a
double torus, etc. …

Gabriel Zachmann
Optional

G. Zachmann 69 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

Homeomorphisms: 3/3Homeomorphisms: 3/3

�Hence, any orientable 2-manifold mesh without
boundary is homeomorphic to a sphere with m
handles (i.e., genus m), where m t 0.

17

The Euler-Poincaré Equation

!  Generalization of the Euler equation for 2-manifold, closed
surfaces (possibly with several components):

!  G = # handles, S = # shells (Schalen / Komponenten)

!  G is called "Genus"

!  Handle (hole, Loch): a piece of string inside a
handle cannot be shrunk towards a single point

!  Shell (Schale): by walking on the surface of a shell, each point can be
reached

! We can even cut out so-called "voids" (Aushöhlungen) by "inner"
shells

!  There are many more generalizations!

V � E + F = 2(S � G)

Gabriel Zachmann
Optional

G. Zachmann 70 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Examples:

!  V = 16, E = 28, F = 14, S = 1, G = 0:
 V - E + F = 2 = 2(S - G)

!  V = 16, E = 32, F = 16, S = 1, G = 1:
 V - E + F = 0 = 2(S - G)

!  V = 16+8, E = 32+12, F = 16+6, G = 1, S = 2:
 V - E + F = 2 = 2(S - G)

Gabriel Zachmann
Optional

G. Zachmann 71 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  Beware: sometimes it is not easy
to determine the genus!

!  Example: genus = 2

!  "Proof": deform topologically equivalently, until the genus is obvious

1. 2. 3.

Gabriel Zachmann
Optional

G. Zachmann 72 Boundary Representations Advanced Computer Graphics 24 July 2014 SS

!  What is the genus of this object?

Global Topology: GenusGlobal�Topology:�Genus

GenusGenus:�:�
Half�the�maximal�number�of�closed�paths�that�do�not�disconnect�

the�mesh�(=�the�number�of�holes)

Genus 1 Genus 2Genus 0 Genus ?

Gabriel Zachmann
Optional

