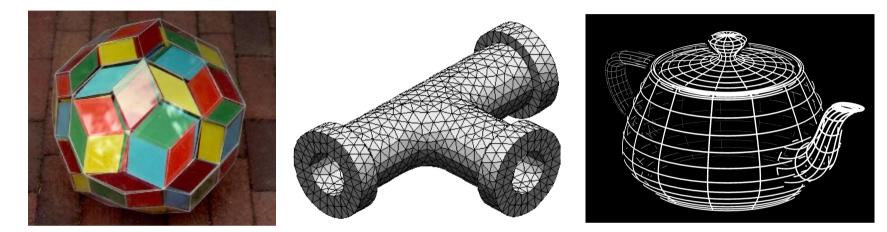


Advanced Computer Graphics Boundary Representations for Graphical Models

G. Zachmann University of Bremen, Germany cgvr.cs.uni-bremen.de

How to store objects in versatile and efficient data structures?



- Definition Boundary-Representation (B-Rep): Objects "consist" of
 - 1. Triangles, quadrangles, and polygons, i.e., geometry; and
 - 2. Incidence and adjacency relationships, i.e., connectivity ("topology")
- By contrast, there are also representations that try to model the volume directly, or that consist only of individual points

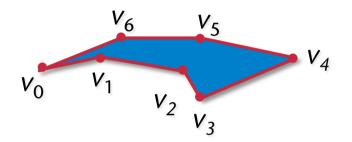
Definitions: Graphs

Bremen

W

- A graph is a pair G=(V, E), where V={v₀, v₁,...,v_{n-1}} is a non-empty set of n different nodes (points, vertices) and E is a set of edges (v_i, v_j)
- When V is a (discrete) subset of \mathbb{R}^d with $d \ge 2$, then G = (V, E) is called a geometric graph
- Two edges/nodes are called neighboring or adjacent, iff they share a common node/edge
- If $e = (v_i, v_j)$ is an edge in *G*, then *e* and v_i are called incident (dito for *e* und v_j ; v_i and v_j are called neighboring or adjacent)
- In the following, edges will be *undirected* edges, and consequently we will denote them just by v_iv_i
- The degree of a node/vertex := number of incident edges

- A polygon is a geometric graph P = (V, E), where $V = \{v_0, v_1, ..., v_{n-1}\} \subset \mathbb{R}^d$, $d \ge 2$, and $E = \{(v_0, v_1), ..., (v_{n-1}, v_0)\}$
- Nodes are called vertices (sometimes points or corners)



A polygon is called

Bremen

lluï

Polygons

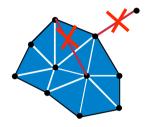
- flat, if all vertices lie in the same plane;
- simple, if it is flat and if the *intersection of every two edges* in *E* is either empty or a vertex in *V*, and if every vertex is incident to exactly two edges (i.e., if the polygon does not have self intersections).
- By definition, we will consider only closed polygons

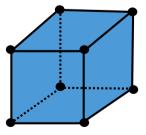
Mesh (Polygonal Mesh)

• Let M be a set of closed, simple polygons P_i ;

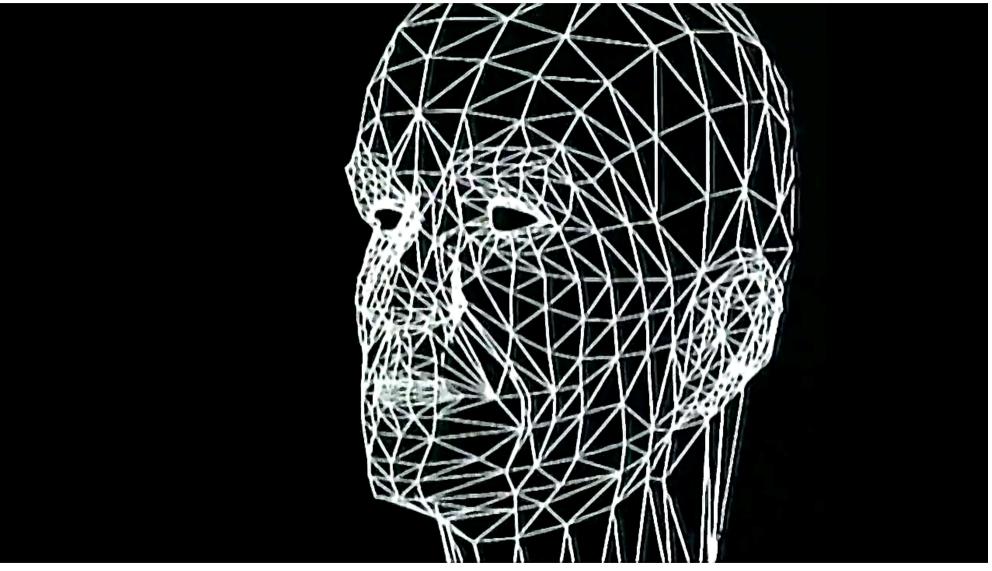
let $V = \bigcup_i V_i$ $E = \bigcup_i E_i$

- M is called a mesh iff
 - the intersection of two polygons in *M* is either empty, a point v∈V, or an edge e∈E; and
 - each edge e ∈ E belongs to at least one polygon (no dangling edges)
- The set of all edges, belonging to one polygon only, is called the border of the mesh
- A mesh with no border is called a closed mesh
- The set of all points V and edges E of a mesh constitute a graph, too





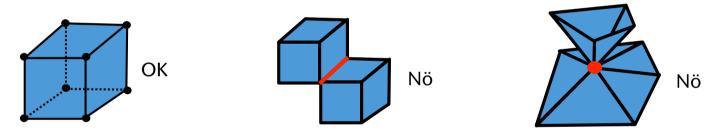
First Explicit Application of a Mesh for a Music Video



Kraftwerk: Musique non stop, 1986. Music video by Rebecca Allen.

Definition: Polyhedron

- A mesh is called polyhedron, if
 - 1. each edge $e \in E$ is incident to exactly two polygons (i.e., the mesh is closed); and
 - 2. no subset of the mesh fulfills condition #1.

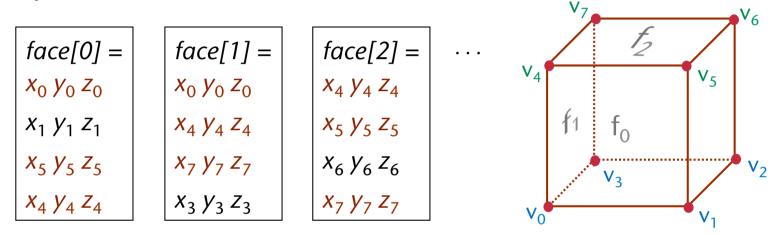


- The polygons are also called *facets / faces* (Facetten)
- Theorem (w/o proof):

Each polyhedron P partitions space into three subsets: its surface, its interior, and its exterior.

The Most Naive Data Structure for Meshes

- Array of polygons; each polygon = array of vertices
- Example:

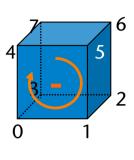


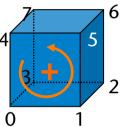
- Problems:
 - Vertices occurr several times!
 - Waste of memory, problems with animations, ...
 - How to find all faces, incident to a given vertex?
 - Different array sizes for polygons with different numbers of vertices

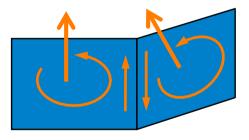
Bromon

- Each facet of a mesh can be oriented by the definition of a vertex order
 - Each facet can have exactly two orientations

- Two adjacent facets have the same orientation, if the common edge is traversed in opposite directions, when the two facets are traversed according to their orientation
- The orientation determines the surface normal of a facet. By convention, it is obtained using the right-hand-rule

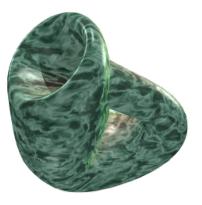






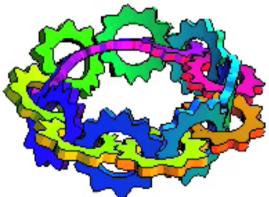
Bromon

- A mesh is called orientable, if all facets can be oriented such that every two adjacent facets have the same orientation
 - The mesh is called oriented, if all facets actually do have the same orientation
- A mesh is called non-orientable, if there are always two adjacent facets that have opposite orientation, no matter how the orientation of all facets is chosen
- Theorems (w/o proof):
 - Each non-orientable surface that is embedded in three-dimensional space and closed must have a self-intersection
 - The surface of a polyhedron is always orientable



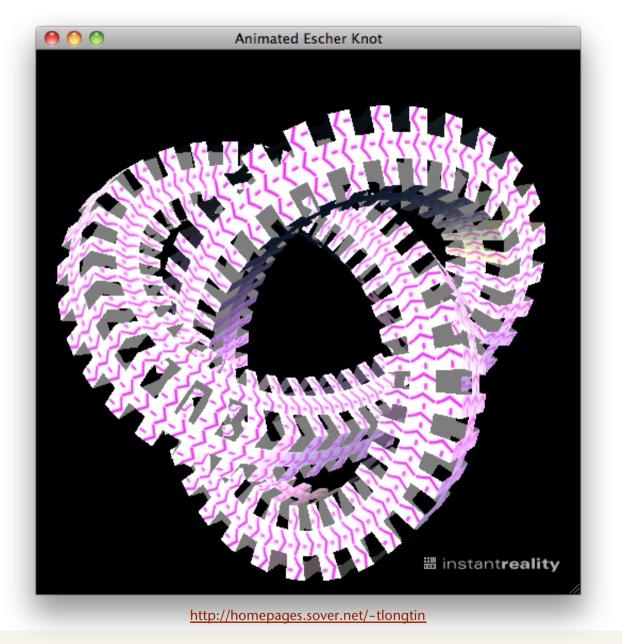
Digression: the Möbius Strip in the Arts

Max Bill



Interlocked Gears, Michael Trott, 2001

Is the Escher Knot an Orientable Mesh or Not?



Definition: Homeomorphism

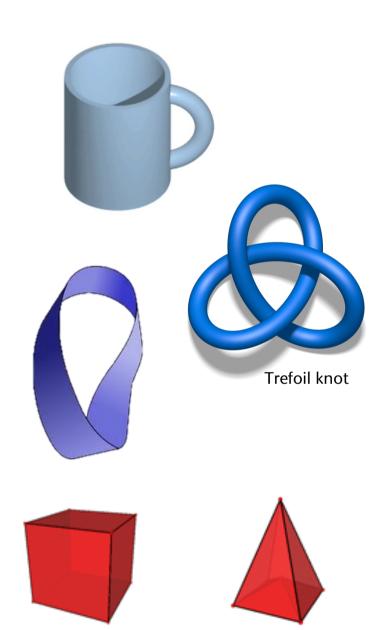
- Homeomorphism = bijective, continuous mapping between two "objects" (e.g. surfaces), the inverse mapping of which must be continuous too
 - Two objects are called homeomorph iff there is a homeomorphism between the two
- Note: don't confuse this with homomorphism or homotopy!
- Illustration:

Bremen

W

- Squishing, stretching, twisting is allowed
- Making holes is not allowed
- Cutting is allowed only, if the object is glued together afterwards at exactly the same place

- Homeomorph objects are also called topologically equivalent
- Examples:
 - Disc and square
 - Cup and torus
 - An object and its mirror object
 - Trefoil knot and ?
 - The border of the Möbius strip and ... ?
- All convex polyhedra are homeomorphic to a sphere
 - Many non-convex ones are topologically equivalent to the sphere, too

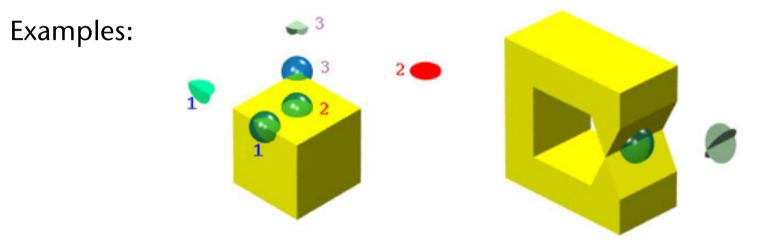


Two-Manifolds (Zwei-Mannigfaltigkeiten)

Bromon

W

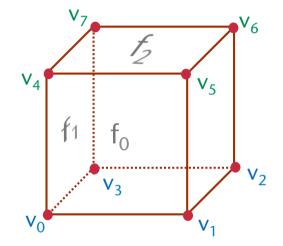
Definition: a surface is called two-manifold, iff for each point on the surface there is an open ball such that the intersection of the ball and the surface is topologically equivalent to a twodimensional disc



- Notice: in computer graphics, often the term "manifold" is used when 2-manifold is meant!
- The term "*piecewise linear manifold*" is sometimes used by people, to denote just a mesh ...

- Idea: common "vertex pool" (shared vertices)
- Example:

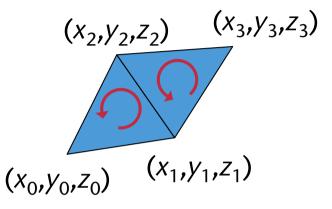
vertices =	fac	e vertex index
$x_0 y_0 z_0$	0	0, 1, 5, 4
$x_1 y_1 z_1$	1	0, 3, 7, 4
$x_2 y_2 z_2$	2	4, 5, 6, 7
$x_3 y_3 z_3$		
•••	L	



- Advantage: significant memory savings
 - I vertex = 1 point + 1 vector (v.-normal) + uv-texture coord. = 32 bytes
 - 1 index = 1 integer = 4 bytes
- Deformable objects / animations are mcuch easier
- Probably the most common data structure

The OBJ File Format

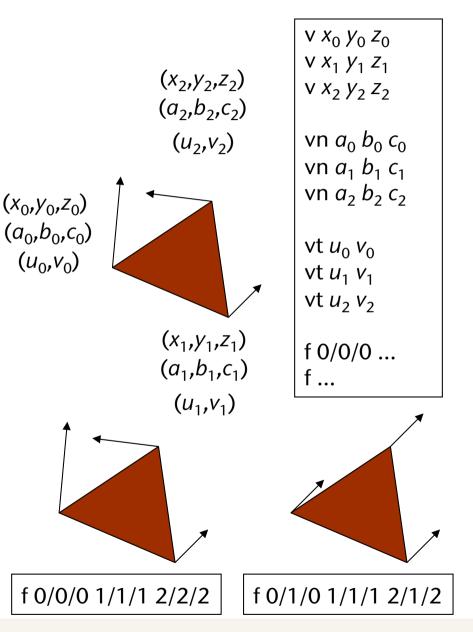
- OBJ = indexed face set + further features
- Line based ASCII format
- 1. Ordered list of vertices:
 - Introduced by "v" on the line
 - Spatial coordinates x, y, z
 - Index is given by the order in the file
- 2. Unordered list of polygons:
 - A polygon is introduced by "f"
 - Then, ordered list of vertex indices
 - Length of list = # of edges
 - Orientation is given by order of vertices
- In principle, "v" and "f" can be mixed arbitrarily



 $v X_0 Y_0 Z_0$ $\mathbf{v} X_1 Y_1 Z_1$ $v X_{2} Y_{2} Z_{2}$ $\mathbf{v} X_3 Y_3 Z_3$ f 012 f 132

More Attributes

- Vertex normals:
 - prefix"vn"
 - contains x, y, z for the normalen
 - not necessarily normalized
 - not necessarily in the same in the same order as the vertices
 - indizes similar to vertex indices
- Texture coordinates:
 - prefix "vt"
 - not necessarily in the same in the same order as the vertices
 - Contains u,v texture coordinates
- Polygons:
 - use "/" as delimiter for the indices
 - vertex / normal / texture
 - normal and texture are optional
 - use "//" to omit normls, if only texture coords are given



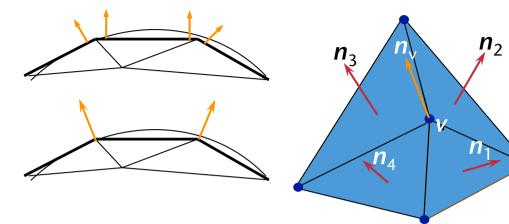
July 2014

Problems:

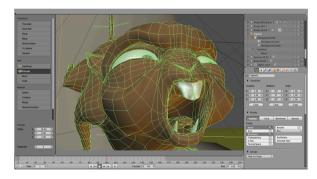
- Edges are (implicitly) stored two times
- Still no adjacency information (no "topology")
- Consequence:
 - Finding all facets incident to a given vertex takes time O(n), where
 n = # vertices of the mesh
 - Dito for finding all vertices adjacent to another given vertex
 - A complete mesh traversal takes time O(n²)
 - With a mesh traversal you can, for instance, test whether an object is closed
 - Can be depth-first or breadth-first

Examples Where Adjacency Information is Needed

Computing vertex normals



Editing meshes



Simulation, e.g., mass-spring systems

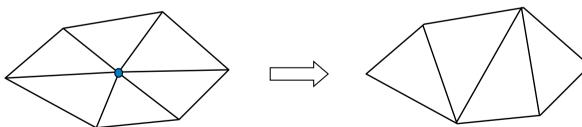
Example Application: Simplification

- Simplification: Generate a coarse mesh from a fine mesh
 - While maintaining certain critera (will not be discussed further here)
- Elementary operations:

Bremen

W

- Edge collapse:
 - All edges adjacent to the edge are required
- Vertex removal:



- All edges incident to the vertex are needed

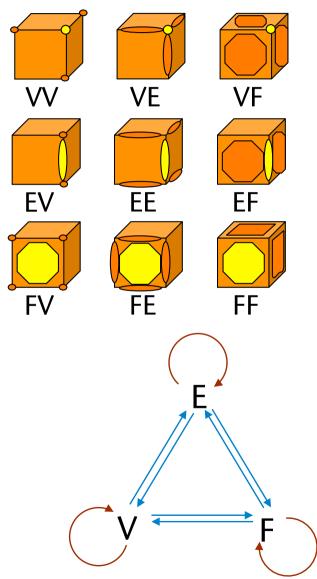
All Possible Connectivity Relationships

	Given	Looking for	notation
		("all neighbou	urs")
1	Vertex	Vertices	$V \rightarrow V$
2	Vertex	Edges	$V \rightarrow E$
3	Vertex	Faces	$V\toF$
4	Edge	Vertices	$E \rightarrow V$
5	Edge	Edges	$E \rightarrow E$
6	Edge	Faces	$E \rightarrow F$
7	Face	Vertices	$F \rightarrow V$
8	Face	Edges	$F \rightarrow E$
9	Face	Faces	$F \rightarrow F$

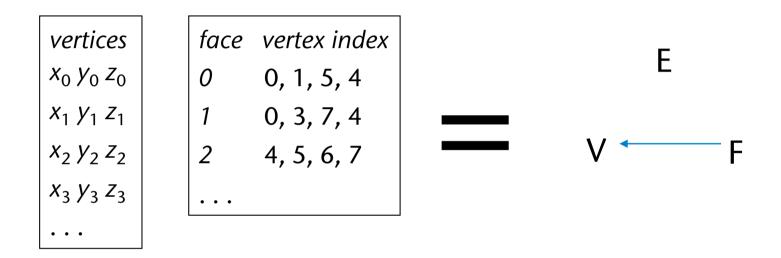
Bremen

W

Abstract notation of a data structure with all connectivity relationships: arrows show the incidence/adjacency info



• Example: the Indexed Face Set



Question: What is the minimal data structure, that can answer all neighboring queries in time O(1)?

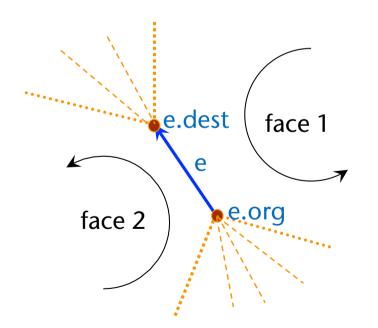
Optional The Winged-Edge Data Structure

- Idea: edge-based data structure (in contrast to face-based)
- Observations:

Bremen

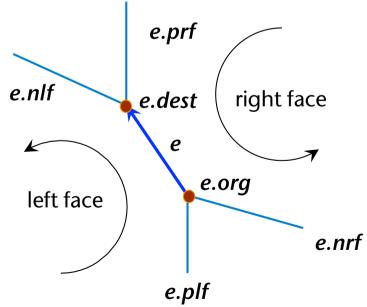
W

- An edge stores two indices to 2 vertices: *e.org*, *e.dest* → yields an orientation of the edge
- In a closed polyhedron, each edge is incident to exactly 2 facets
- If it is oriented, then one of these facets has the same orientation as the edge, the other one is opposite



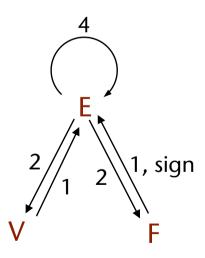
Optional

- Each edge has 4 pointers to 4 adjacent edges:
 - e.prf = edge adjacent to e.dest and incident to right face (prf = "previous right face")
 - 2. e.nrf = edge adjacent to e.org and incident to right face
 ("next right face")
 - **3./4. e.nlf** / **e.plf** = edge adjacent to *e* and incident to *left face* ("next/ previous left face")
- Observation: if all facets are oriented consistently, then each edge occurs once from org→dest and once from dest→org



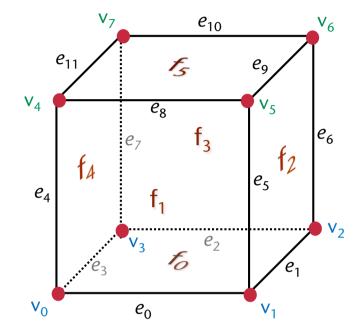
Optional

- In addition:
 - Each edge stores one pointer to the left and right facet (e.lf, e.rf)
 - Each facet & each vertex stores one pointer to a arbitrary edge incident to it
- Abstract representation of the data structure:



Ű

Example



List of vertices

V		е		
0	0.0	0.0	0.0	0
1	1.0	0.0	0.0	1
2	1.0	1.0	0.0	2
3	0.0	1.0	0.0	3
4	0.0	0.0	1.0	8
5	1.0	0.0	1.0	9
6	1.0	1.0	1.0	10
7	0.0	1.0	1.0	11

Facets 0 e0 1 e8 2 e5 3 e6 4 e11 5 e8 +

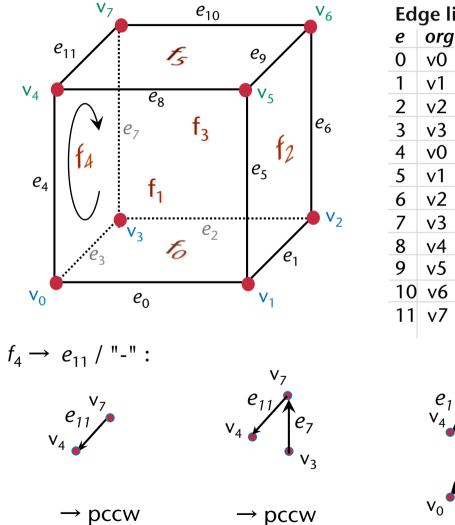
List of edges

LIJ	List of edges										
е	org	dest	ncw	nccw	pcw	рссw	lf	rf			
0	v0	v1	e1	e5	e4	e3	f1	fO			
1	v1	v2	e2	e6	e5	e0	f2	fO			
2	v2	v3	e3	e7	e6	e1	f3	fO			
3	v3	v0	e0	e4	e2	e7	f4	fO			
4	v0	v4	e8	e11	e0	e3	f4	f1			
5	v1	v5	e9	e8	e1	e0	f1	f2			
6	v2	v6	e10	e9	e2	e1	f2	f3			
7	v3	v7	e11	e10	e3	e2	f3	f4			
8	v4	v5	e5	e9	e4	e11	f5	f1			
9	v5	v6	e6	e10	e5	e8	f5	f2			
10	v6	v7	e7	e11	e9	e6	f5	f3			
11	v7	v4	e4	e8	e10	e7	f5	f4			

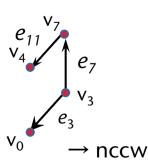
Optional

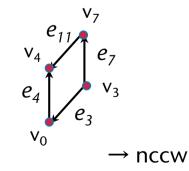
Example for Traversing that Data Structure

• Example task: enumerate all edges of f_4 in CCW order:



e	org	dest	ncw	nccw	pcw	рссw	lf	r
0	v0	v1	e1	e5	e4	e3	f1	f
1	v1	v2	e2	e6	e5	e0	f2	f
2	v2	v3	e3	e7	e6	e1	f3	f
3	v3	v0	e0	e4	e2	e7	f4	f
4	v0	v4	e8	e11	e0	e3	f4	f
5	v1	v5	e9	e8	e1	e0	f1	f
6	v2	v6	e10	e9	e2	e1	f2	f
7	v3	v7	e11	e10	e3	e2	f3	f4
8	v4	v5	e5	e9	e4	e11	f5	f
9	v5	v6	e6	e10	e5	e8	f5	f
10	v6	v7	e7	e11	e9	e6	f5	f
11	v7	v4	e4	e8	e10	e7	f5	f4





Finish

July 2014

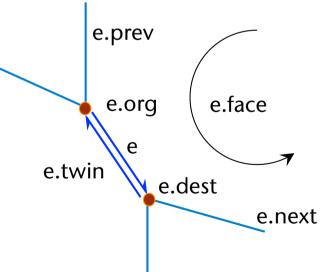
SS

Optional

- All neighborhood/connectivity queries can be answered in time O(k) where (k = size of the output)
 - 3 kinds of queries can be answered directly in O(1), and 6 kinds of queries can be answered by a local traversal of the data structures around a facet or a vertex in O(k)
- Problem: When following edges, one has to test for each edge how it is oriented, in order to determine whether to follow n[c]cw or p[c]cw!

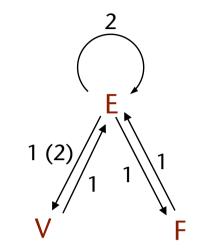
Doubly Connected Edge List [Preparata & Müller, 1978]

- S. cg
- In computer graphics rather known as "half-edge data structure"
- Arguably the easiest and most efficient connectivity data structure
- Idea:
 - Like the winged-edge DS, but with "split" edges
 - One half-edge (= entry in the edge table) represents only one direction and one "side" of the complete edge
 - The pointers stored with each half-edge:
 - Start (org) and end vertex (dest)
 - Incident face (on the left-hand side)
 - Next und previous edge (in traversal order)
 - Originating vertex can be omitted, because e.org = e.twin.dest)

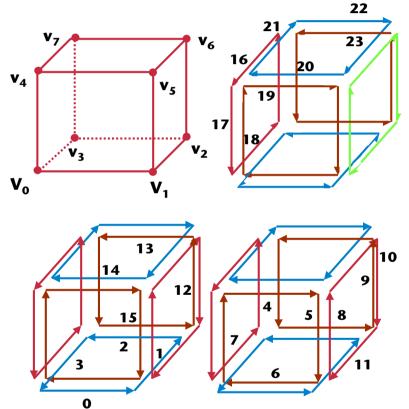


Abstract notation:

- 1 or 2 pointers to vertices per edge, epending on whether or not a pointer to the originating vertex (org) is stored with e
- Requires twice as many entries in the edge table as the winged-edge DS



Example (Here in CW Order!)



Also note the demo on <u>http://www.holmes3d.net/graphics/dcel/</u>

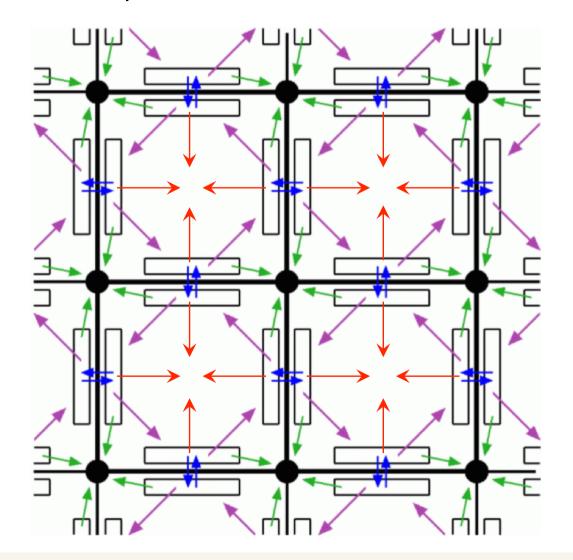
Lis	st of Ve		Fa	cets		
v		coord		е	0	e20
0	0.0	0.0	0.0	0	1	e4
1	1.0	0.0	0.0	1	2	e0
2	1.0	1.0	0.0	2	3	e15
3	0.0	1.0	0.0	3	4	e16
4	0.0	0.0	1.0	4	5	e8
5	1.0	0.0	1.0	9		
6	1.0	1.0	1.0	13		
7	0.0	1.0	1.0	16		

List of Half-Edges

e	org	next	prv	twin	e	org	next	prv	twin
0	0	1	3	6	12	2	13	15	10
1	1	2	0	11	13	6	14	12	22
2	2	3	1	15	14	7	15	13	19
3	3	0	2	18	15	3	12	14	2
4	4	5	7	20	16	7	17	19	21
5	5	6	4	8	17	4	18	16	7
6	1	7	5	0	18	0	19	17	3
7	0	4	6	17	19	3	16	18	14
8	1	9	11	5	20	5	21	23	4
9	5	10	8	23	21	4	22	20	16
10	6	11	9	12	22	7	23	21	13
11	2	8	10	1	23	6	20	22	9

SS

• Visualization for a quad mesh:



Optional

Invariants in a DCEL

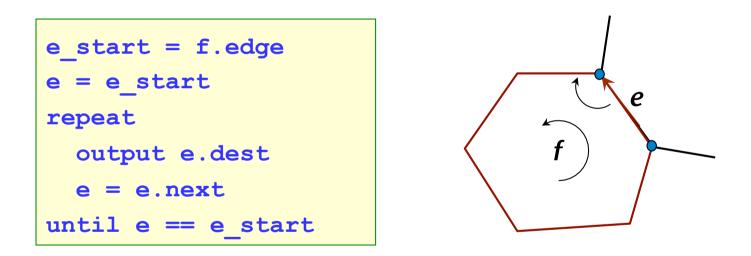
Bremen

W

- Here, we will use the "functional notation", i.e., twin(e) = e.twin
- Invariants (= axioms in an Abstract Data Type "DCEL"):
 - twin(twin(e)) = e, if the mesh is closed
 - org(next(e)) = dest(e)
 - org(e) = dest(twin(e)) [if twin(e) is existing]
 - org(v.edge) = v [v always points to a leaving edge!]
 - etc. ...

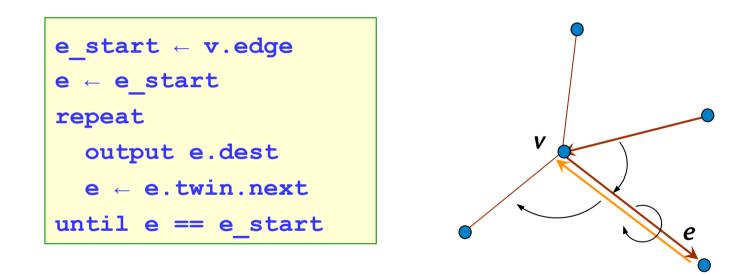
Face and Vertex Cycling

- Given: a closed, 2-manifold mesh
- Wanted: all vertices incident to a given face f
- Algorithm:



• Running time is in O(k), with k = # vertices of f

- Task: report all vertices adjacent to a given vertex v
- Algorithm (w.l.o.g., v points to a leaving edge):



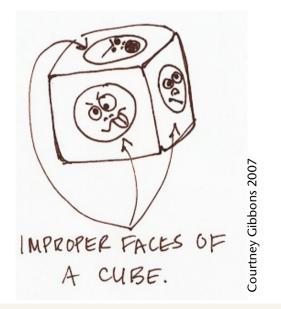
• Running time is in O(k), where k = # neighbours of v

Terminology: a feature = a vertex or an edge or a facet

• Theorem:

A DCEL over a 2-manifold mesh supports all incidence and adjacency queries for a given feature in time O(1) or O(k), where k = # neighbours.

 Crucial property: the DCEL must be proper



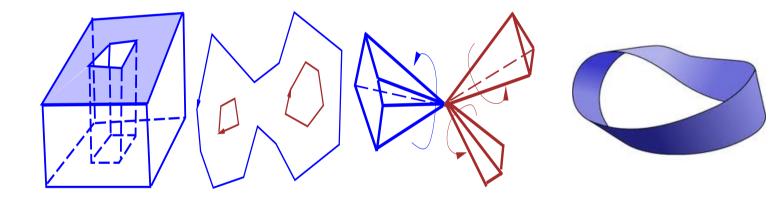
Limitations / Extensions of the DCEL

- A DCEL can store only meshes that are ...
 - 1. two-manifold and
 - 2. orientable, and

Bromon

W

3. the polygons of which do not have "holes"!



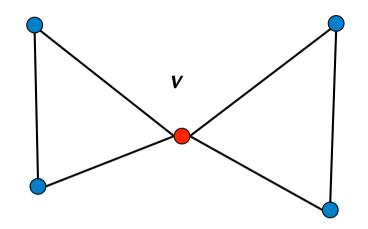
- Extensions: lots of them, e.g. those of Hervé Brönnimann
 - For non-2-manifold vertices, store several pointers to incident edges
 - Dito for facets with holes
 - Yields several cycles of edges for such vertices/faces

A DCEL Data Structure for Non-2-Manifolds

 Directed Edge DS: extension of half-edge DS for meshes that are not 2-manifold at just a few extraordinary places

- Idea:
 - Store pointers to other edges (e.next, e.prev, v.edge, f.edge) as integer indices into the edge array
 - Use the sign of the index as a flag for additonal information
 - Interpret negative indices as pointers into additonal arrays, e.g.,
 - a list of all edges eminating from a vertex; or
 - the connected component accessible from a vertex / edge

• Why does the conventional DCEL fail for the following example?



Combinatorial Maps

Bremen

- Remark: winged-edge and DCEL data structures are (simple) examples of so-called combinatorial maps
- Other combinatorial maps are:
 - Quad-edge data structure (and augmented quad-edge)
 - Many extensions of DCEL
 - Cell-chains, n-Gmaps
 (like DCELs that can be extended to n-dimensional space)
 - Many more ...

The Euler Equation

Theorem (Euler's Equation):

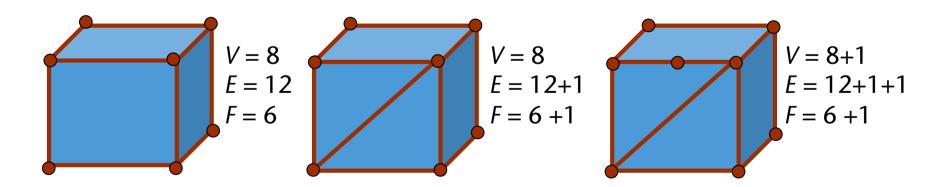
Let V, E, F = number of vertices, edges, faces

in a polyhedron that is homeomorph to a sphere.

Then,

$$V-E+F=2$$

Examples:

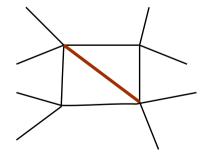


Proof (given by Cauchy)

- Given: a closed mesh (Polyhedron)
- First idea:
 - Remove one facet (yields an open mesh; the border is exactly the edge cycle of the removed facet)
 - Stretch the mesh by pulling its border apart until it becomes a planar graph (works only if the polyhedron is homeomorph to a sphere)
 - It remains to show:

$$V - E + F = 1$$

- Second idea: triangulate the graph (i.e., the mesh)
 - Draw diagonals in all facets with more than 3 vertices
 - For the new feature count we have



$$V' - E' + F' = V - (E + 1) + (F + 1) = V - E + F$$

V' - E' + F' = V - (E - 1) + (F - 1) = V - E + F

 If there is a triangle with exactly two border edges, remove the triangle ; it follows that

V' - E' + F' = (V - 1) - (E - 2) + (F - 1) = V - E + F

- Repeat, until only one triangle remains
 - For that triangle, the Euler equation is obviously correct
 - Because each of the above transformations did not change the value of V-E+F, the equation is also true for the original graph, hence for the original mesh

55

- The graph has a border; triangles have 0, 1, or 2 "border edges"
 - Repeat one of the following two transformations:
 - If there is a triangle with exactly one border edge, remove this triangle ; it follows that

Bremen

G. Zachmann Advanced Computer Graphics SS July 2014

- Euler's Equation → relationship between #triangles and #vertices in a closed *triangle* mesh
- In a closed triangle mesh, each edge is incident to exactly 2 triangles , so

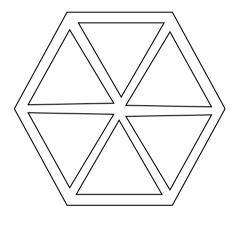
$$3F = 2E$$

Plug this into Euler's equation:

$$2 = V - \frac{3}{2}F + F \Leftrightarrow \frac{1}{2}F = V - 2$$

Therefore, for large triangle meshes

$$F \approx 2V$$



U

Application of Euler's Equation to the Platonic Solids

Definition Platonic Solid:

Bromon

W

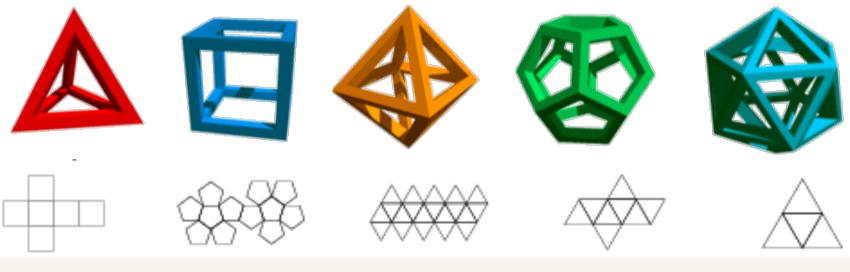
A convex polyhedron consisting of a number of *congruent* & *regular* polygons, with the same number of faces meeting at each vertex.

- Regular polygon = all sides are equal, all angles are equal
- Theorem (Euklid):

Advanced Computer Graphics

G. Zachmann

There are exactly *five* platonic solids.



July 2014

SS

All facets have the same number of edges = n; therefore:

$$2E = nF \Leftrightarrow F = \frac{2}{n}E$$

All vertices have the same number of incident edges = m;
 therefore

$$2E = mV \Leftrightarrow V = \frac{2}{m}E$$

Plugging this into Euler's equation:

Bremen

W

Proof

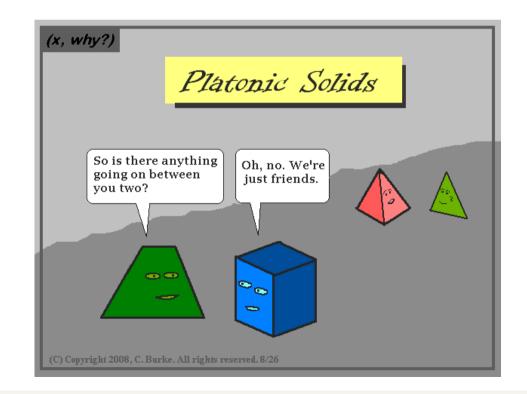
$$2 = V - E + F = \frac{2}{m}E - E + \frac{2}{n}E \iff \frac{2}{E} = \frac{2}{m} - 1 + \frac{2}{n}$$

• Yields the following condition on *m* and *n*:

$$\frac{1}{m} + \frac{1}{n} = \frac{1}{2} + \frac{1}{E} > \frac{1}{2}$$

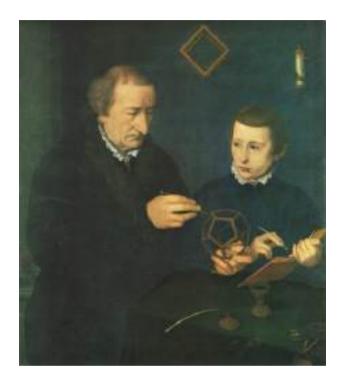
- Additional condition: m and n both must be ≥ 3
- Which {*m*,*n*} fulfill these conditions:

$$\{3,3\}$$
 $\{3,4\}$ $\{4,3\}$ $\{5,3\}$ $\{3,5\}$

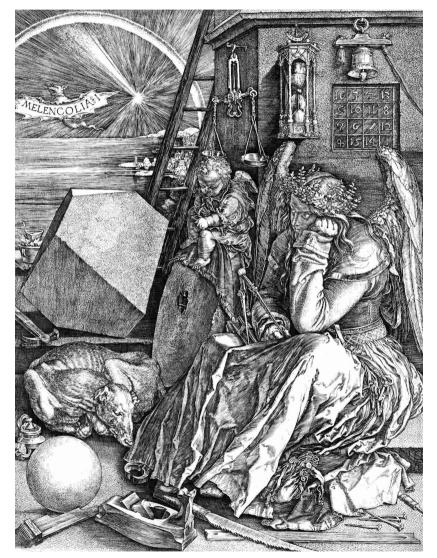


Digression: Platonic Solids in the Arts

The platonic solids have been known at least 1000 years before Plato in Scotland

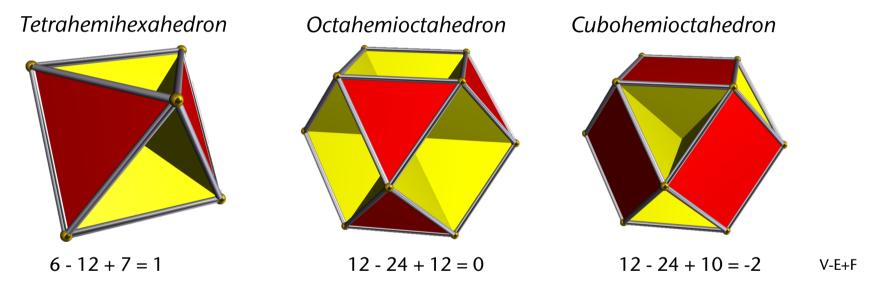


Portrait of Johannes Neudörfer and his Son Nicolas Neufchatel, 1527–1590



Dürer: Melencolia I

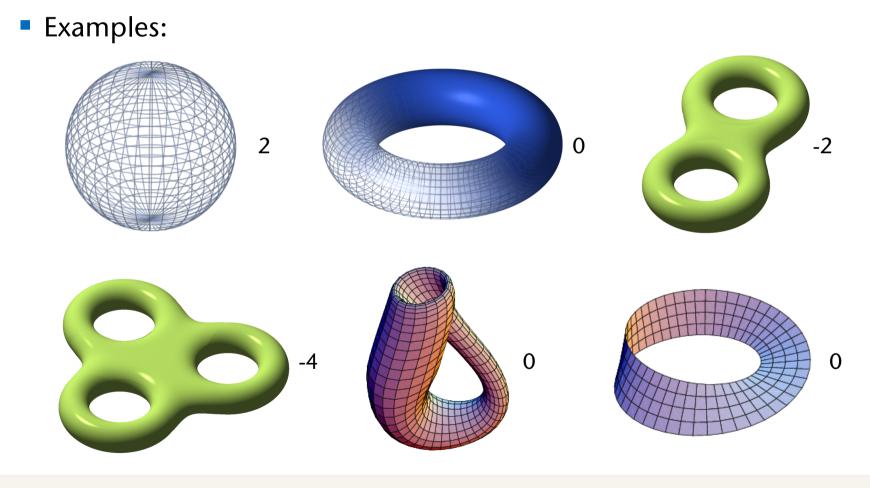
- Caution: the Euler equation holds only for polyhedra, that are topologically equivalent to a sphere!
- Examples:



- But: the quantity V-E+F stays the same no matter how the polyhedron is deformed (homeomorph)
 - \rightarrow so the quantity V-E+F is a topologic invariant

Definition Euler characteristic:

$$\chi = V - E + F$$



V = 24 V = 16V = 16V = 28 E = 32 E = 36 E = 56 E = 48 F = 20 F = 26 F = 22 F = 16 $\chi = -2$ $\chi = 0$ $\chi = 0$ $\chi = -2$

The Euler characteristic is even independent of the tessellation!

• Theorem:

Assume we are given a *closed* and *orientable* mesh consisting of just one *shell*. Then the following holds: The Euler characteristic $\chi = 2, 0, -2, ... \Leftrightarrow$ the mesh is topologically equivalent to a sphere, a torus, a double torus, etc. ...

Optional The Euler-Poincaré Equation

Generalization of the Euler equation for 2-manifold, closed surfaces (possibly with several components):

$$V-E+F=2(S-G)$$

- G = # handles, S = # shells (Schalen / Komponenten)
- G is called "Genus"

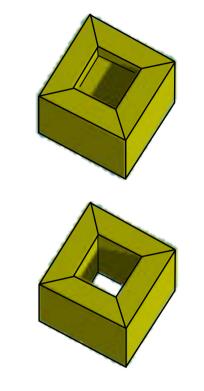
Bremen

W

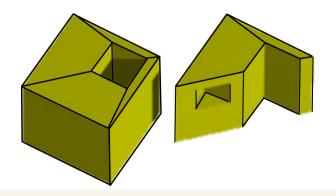
- Handle (hole, Loch): a piece of string inside a handle cannot be shrunk towards a single point
- Shell (Schale): by walking on the surface of a shell, each point can be reached
- We can even cut out so-called "voids" (Aushöhlungen) by "inner" shells
- There are many more generalizations!

• Examples:

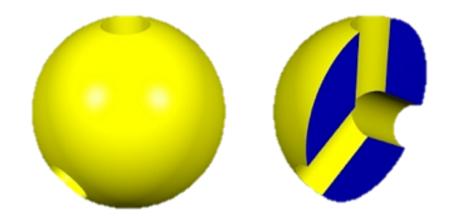
V = 16, E = 28, F = 14, S = 1, G = 0:
 V-E+F = 2 = 2(S-G)



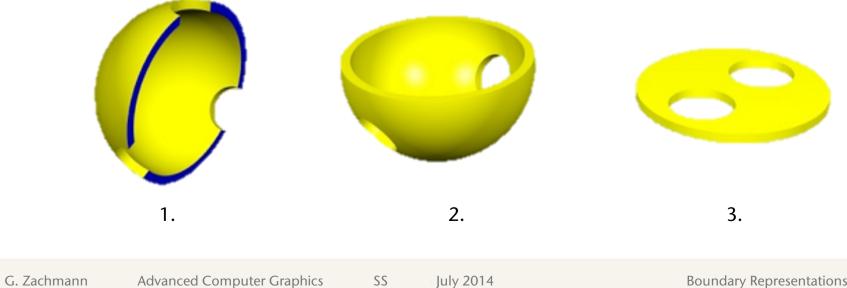
V = 16+8, E = 32+12, F = 16+6, G = 1, S = 2:
 V-E+F = 2 = 2(S-G)



- Beware: sometimes it is not easy to determine the genus!
- Example: genus = 2



Proof": deform topologically equivalently, until the genus is obvious



71

• What is the genus of this object?

