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The Problem 

!  How to store objects in versatile and efficient data structures? 

!  Definition Boundary-Representation (B-Rep): 
Objects "consist" of  

1.  Triangles, quadrangles, and polygons, i.e., geometry; and 

2.  Incidence and adjacency relationships, i.e., connectivity ("topology") 

!  By contrast, there are also representations that try to model the 
volume directly, or that consist only of individual points 
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Definitions: Graphs 

!  A graph is a pair G=(V, E), where V = {v0,v1,…,vn-1} is a non-empty 
set of n different nodes (points, vertices) and E is a set of edges 
(vi, vj) 

!  When V is a (discrete) subset of        with d ≥ 2, then G = (V, E) is 
called a geometric graph 

!  Two edges/nodes are called neighboring or adjacent, iff they 
share a common node/edge 

!  If e = (vi, vj) is an edge in G,  then e and  vi   are called incident (dito 
for e und vj ;  vi and vj are called neighboring or adjacent) 

!  In the following, edges will be undirected edges, and 
consequently we will denote them just by  vivj 

!  The degree of a node/vertex := number of incident edges 

Rd
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Polygons 

!  A polygon is a geometric graph P = (V, E), where  
V = {v0,v1,…,vn-1} ⊂       ,  d ≥ 2, and E = { (v0,v1), …, (vn-1, v0 ) } 

!  Nodes are called vertices (sometimes points or corners) 

!  A polygon is called 

!  flat, if all vertices lie in the same plane; 

!  simple, if it is flat and if the intersection of every two edges in E is either 
empty or a vertex in V, and if every vertex is incident to exactly two 
edges (i.e., if the polygon does not have self intersections). 

!  By definition, we will consider only closed polygons 

v0 v1 
v2 

v4 
v5 v6 

v3 

Rd
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Mesh (Polygonal Mesh) 

!  Let M be a set of closed, simple polygons Pi ;  
 let    

!  M is called a mesh iff 

!  the intersection of two polygons in M is either empty, a 
point v  ∈ V , or an edge  e  ∈ E ; and  

!  each edge e  ∈ E  belongs to at least one polygon 
(no dangling edges) 

!  The set of all edges, belonging to one polygon only, 
is called the border of the mesh 

!  A mesh with no border is called a closed mesh 

!  The set of all points V and edges E of a mesh 
constitute a graph, too 

V =
S

i Vi E =
S

i Ei



G. Zachmann 7 Boundary Representations Advanced Computer Graphics 24 July 2014 SS 

First Explicit Application of a Mesh for a Music Video 

Kraftwerk: Musique non stop, 1986. Music video by Rebecca Allen. 
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Definition: Polyhedron 

!  A mesh is called polyhedron, if 

1.  each edge  e ∈ E  is incident to exactly two polygons (i.e., the mesh is 
closed); and 

2.  no subset of the mesh fulfills condition #1. 

!  The polygons are also called facets / faces (Facetten)  

!  Theorem (w/o proof):  
Each polyhedron P partitions space into three subsets: its surface, 
its interior, and its exterior. 

 

OK Nö Nö 
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The Most Naive Data Structure for Meshes 

! Array of polygons; each polygon = array of vertices 

! Example: 

!  Problems: 

!  Vertices occurr several times! 

- Waste of memory, problems with animations, … 

! How to find all faces, incident to a given vertex? 

! Different array sizes for polygons with different numbers of vertices   

face[0] = 
x0 y0 z0 

x1 y1 z1 

x5 y5 z5 

x4 y4 z4 

face[1] = 
x0 y0 z0 

x4 y4 z4 

x7 y7 z7 

x3 y3 z3 v0 v1 

v2 

v4 v5 

v6 v7 

v3 

f0 

face[2] = 
x4 y4 z4 

x5 y5 z5 

x6 y6 z6 

x7 y7 z7 

. . . 
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Orientation 

!  Each facet of a mesh can be oriented by the 
definition of a vertex order 
!  Each facet can have exactly two orientations 

!  Two adjacent facets have the same 
orientation, if the common edge is traversed 
in opposite directions, when the two facets 
are traversed according to their orientation 

!  The orientation determines the surface 
normal of a facet. By convention, it is 
obtained using the right-hand-rule 

0 1 

2 

6 
5 4 

3 

7 

+ 

0 1 

2 

6 
5 4 

7 

3 - 
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!  A mesh is called orientable, if all facets can be oriented such that  
every two adjacent facets have the same orientation 
!  The mesh is called oriented, if all facets actually do have the same   

orientation 

!  A mesh is called non-orientable, if there are 
always two adjacent facets that have 
opposite orientation, no matter   
how the orientation of all facets is chosen 

!  Theorems (w/o proof): 

!  Each non-orientable surface that is embedded in  
three-dimensional space and closed must have 
a self-intersection 

!  The surface of a polyhedron is always orientable 
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Digression: the Möbius Strip in the Arts 

Möbius Strip II, woodcut, 1963 Interlocked Gears, 
Michael Trott, 2001 

Max Bill 
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Is the Escher Knot an Orientable Mesh or Not? 

http://homepages.sover.net/~tlongtin  
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Definition: Homeomorphism 

!  Homeomorphism = bijective, continuous mapping between two 
"objects" (e.g. surfaces), the inverse mapping of which must be 
continuous too 

!  Two objects are called homeomorph iff there is a  homeomorphism 
between the two 

!  Note: don't confuse this with homomorphism or homotopy! 

!  Illustration:  

!  Squishing, stretching, twisting is allowed 

! Making holes is not allowed 

!  Cutting is allowed only, if the object is glued together afterwards at 
exactly the same place 
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!  Homeomorph objects are also called 
topologically equivalent 

!  Examples: 
!  Disc and square 

!  Cup and torus 

!  An object and its mirror object  

!  Trefoil knot and .... ? 

!  The border of the Möbius strip and ... ? 

!  All convex polyhedra are 
homeomorphic to a sphere 
! Many non-convex ones are topologically 

equivalent to the sphere, too 

Trefoil knot 
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Two-Manifolds (Zwei-Mannigfaltigkeiten) 

!  Definition: a surface is called two-manifold, iff for each point on 
the surface there is an open ball such that the intersection of the 
ball and the surface is topologically equivalent to a two-
dimensional disc 

!  Examples: 

!  Notice: in computer graphics, often the term "manifold" is used 
when 2-manifold is meant! 

!  The term "piecewise linear manifold" is sometimes used by 
people, to denote just a mesh …  
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The Indexed Face Set 

!  Idea: common "vertex pool" (shared vertices) 

!  Example: 

!  Advantage: significant memory savings 

!  1 vertex = 1 point + 1 vector (v.-normal) + uv-texture coord. = 32 bytes 

!  1 index = 1 integer                                                                         = 4 bytes 

!  Deformable objects / animations are mcuch easier 

!  Probably the most common data structure 

vertices = 
x0 y0 z0 

x1 y1 z1 

x2 y2 z2 

x3 y3 z3 

. . . 

face   vertex index 
0        0, 1, 5, 4 
1        0, 3, 7, 4 
2        4, 5, 6, 7 

. . . 
v0 v1 

v2 

v4 v5 

v6 v7 

v3 

f0 
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The OBJ File Format 

!  OBJ = indexed face set + further features 

!  Line based ASCII format 

1.  Ordered list of vertices: 

!  Introduced by "v" on the line 

!  Spatial coordinates x, y, z 

!  Index is given by the order in the file 

2.  Unordered list of polygons: 

!  A polygon is introduced by "f" 

!  Then, ordered list of vertex indices 

!  Length of list = # of edges 

! Orientation is given by order of vertices 

!  In principle, "v" and "f" can be mixed 
arbitrarily 

v x0 y0 z0 

v x1 y1 z1 

v x2 y2 z2 

v x3 y3 z3 
 

f  0 1 2 
f 1 3 2 

(x0,y0,z0) (x1,y1,z1) 

(x2,y2,z2) (x3,y3,z3) 
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More Attributes 

!  Vertex normals: 
!  prefix"vn" 
!  contains x, y, z for the normalen 
!  not necessarily normalized 
!  not necessarily in the same in the 

same order as the vertices 
!  indizes similar to vertex indices 

!  Texture coordinates: 
!  prefix "vt" 
!  not necessarily in the same in the 

same order as the vertices 
!  Contains u,v texture coordinates 

!  Polygons: 
!  use "/" as delimiter for the indices  
!  vertex / normal / texture 
!  normal and texture are optional 
!  use "//" to omit normls, if only 

texture coords are given 

v x0 y0 z0 
v x1 y1 z1 
v x2 y2 z2 
 
vn a0 b0 c0 
vn a1 b1 c1 
vn a2 b2 c2 
 
vt u0 v0 
vt u1 v1 
vt u2 v2 
 
f 0/0/0 … 
f … 

(x0,y0,z0) 
 (a0,b0,c0) 

 (u0,v0) 

(x1,y1,z1) 
(a1,b1,c1) 

(u1,v1) 

(x2,y2,z2) 
(a2,b2,c2) 

(u2,v2) 

f 0/0/0 1/1/1 2/2/2 f 0/1/0 1/1/1 2/1/2 
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!  Problems: 

!  Edges are (implicitly) stored two times 

!  Still no adjacency information (no "topology") 

!  Consequence: 

!  Finding all facets incident to a given vertex takes time O(       ), where 

n = # vertices of the mesh 

!  Dito for finding all vertices adjacent to another given vertex 

!  A complete mesh traversal takes time O(n2) 

-  With a mesh traversal you can, for instance, test whether an object is closed 

-  Can be depth-first or breadth-first 

n 
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Examples Where Adjacency Information is Needed 

!  Computing vertex normals 

!  Editing meshes 

!  Simulation, e.g., mass-spring systems 

p0 
n1 n4 

n3 
n2 

v 

nv 
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Example Application: Simplification 

!  Simplification: Generate a coarse mesh from a fine mesh 

! While maintaining certain critera (will not be discussed further here) 

!  Elementary operations: 

!  Edge collapse: 

-  All edges adjacent to the edge are required 

!  Vertex removal: 

-  All edges incident to the vertex are needed 
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All Possible Connectivity Relationships 

  Given  Looking for  notation 
 ("all neighbours ..") 

1   Vertex  Vertices  V � V 

2   Vertex  Edges  V � E 

3   Vertex  Faces  V � F 

4   Edge  Vertices  E � V 

5   Edge  Edges  E � E 

6   Edge   Faces  E � F 

7   Face  Vertices  F � V 

8   Face  Edges  F � E 

9   Face   Faces  F � F 
 

 

Abstract notation of a data structure with  
all connectivity relationships: 
arrows show the incidence/adjacency info 
 

VV VF VE 

EV EF EE 

FV FF FE 

V F 

E 
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!  Example: the Indexed Face Set 

!  Question:  What is the minimal data structure, that can answer all 
neighboring queries in time O(1)? 

vertices 
x0 y0 z0 

x1 y1 z1 

x2 y2 z2 

x3 y3 z3 

. . . 

face   vertex index 
0        0, 1, 5, 4 
1        0, 3, 7, 4 
2        4, 5, 6, 7 

. . . 
= V F 

E 
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The Winged-Edge Data Structure 

!  Idea: edge-based data structure (in contrast to face-based) 

!  Observations: 

!  An edge stores two indices to 2 vertices:  e.org , e.dest 
� yields an orientation of the edge 

!  In a closed polyhedron, each edge is incident to exactly 2 facets 

!  If it is oriented, then one  
of these facets has the same  
orientation as the edge,  
the other one is opposite 

e.org 

e.dest 

face 2 

face 1 
e 

Gabriel Zachmann
Optional
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!  Each edge has 4 pointers to 4 adjacent edges: 

1.  e.prf = edge adjacent to e.dest and incident to right face  
            (prf = "previous right face") 

2.  e.nrf = edge adjacent to e.org and incident to right face  
            ("next right face") 

3. /4.  e.nlf / e.plf = edge adjacent to e and incident to left face ("next/
previous left face") 

 

!  Observation: if all facets  
are oriented consistently,  
then each edge occurs once 
from org⟶dest and once 
from dest⟶org 

e.org 

e.dest 

e.prf 

e.plf 

e 

e.nlf 

e.nrf 

left face 

right face 

Gabriel Zachmann
Optional
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!  In addition:  

!  Each edge stores one pointer to the left and right facet (e.lf, e.rf) 

!  Each facet & each vertex stores one pointer to a arbitrary edge incident 
to it 

 

!  Abstract representation of the data structure: 

V F 

E 

1, sign 2 

4 

2 1 

Gabriel Zachmann
Optional
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Example 

List of vertices 
v     coord    e 
0     0.0    0.0  0.0  0 
1     1.0  0.0  0.0  1 
2     1.0  1.0  0.0  2 
3     0.0  1.0  0.0  3 
4     0.0  0.0  1.0  8 
5     1.0  0.0  1.0  9 
6     1.0  1.0  1.0  10 
7     0.0  1.0  1.0  11 

List of edges 
e    org    dest     ncw     nccw    pcw    pccw      lf       rf 
0    v0        v1       e1       e5         e4       e3         f1      f0  
1    v1        v2       e2   e6         e5       e0         f2      f0 
2    v2        v3       e3   e7         e6       e1         f3      f0 
3    v3        v0       e0   e4         e2       e7         f4      f0 
4    v0        v4       e8   e11       e0       e3         f4      f1 
5    v1        v5       e9   e8         e1       e0         f1      f2 
6    v2        v6       e10   e9         e2       e1         f2      f3 
7    v3        v7       e11   e10       e3       e2         f3      f4 
8    v4        v5       e5   e9         e4       e11       f5      f1 
9    v5        v6       e6   e10       e5       e8         f5      f2 
10  v6        v7       e7   e11       e9       e6         f5      f3 
11  v7        v4       e4   e8         e10     e7         f5      f4 

Facets 
0    e0    - 
1    e8    - 
2    e5    - 
3    e6    - 
4    e11   - 
5    e8    + 

f1 

f3 e7 

v0 v1 

v2 

v4 v5 

v6 v7 

v3 

e0 

e1 
e2 

e3 

e4 e5 

e6 
e8 

e9 

e10 

e11 

Gabriel Zachmann
Optional
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Example for Traversing that Data Structure 

!  Example task: enumerate all edges of f4 in CCW order: 

Edge list 
e    org    dest     ncw     nccw    pcw    pccw      lf       rf 
0    v0        v1       e1       e5         e4       e3         f1      f0  
1    v1        v2       e2   e6         e5       e0         f2      f0 
2    v2        v3       e3   e7         e6       e1         f3      f0 
3    v3        v0       e0   e4         e2       e7         f4      f0 
4    v0        v4       e8   e11       e0       e3         f4      f1 
5    v1        v5       e9   e8         e1       e0         f1      f2 
6    v2        v6       e10   e9         e2       e1         f2      f3 
7    v3        v7       e11   e10       e3       e2         f3      f4 
8    v4        v5       e5   e9         e4       e11       f5      f1 
9    v5        v6       e6   e10       e5       e8         f5      f2 
10  v6        v7       e7   e11       e9       e6         f5      f3 
11  v7        v4       e4   e8        e10      e7         f5      f4 

f1 

f3 e7 

v0 v1 

v2 

v4 v5 

v6 v7 

v3 

e0 

e1 
e2 

e3 

e4 e5 

e6 
e8 

e9 

e10 

e11 

f4 �  e11 / "-" : 

� pccw 

v3 

e7 
v7 

v4 
e11 

e3 
v0 

e7 
v4 

v7 

v3 

e11 
Finish 

v7 
e11 

v4 

� pccw � nccw 

e7 

e4 

v4 

v7 

e3 
v0 

v3 

e11 

� nccw 

Gabriel Zachmann
Optional
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!  All neighborhood/connectivity queries can be answered in 
time O(k) where (k = size of the output)  

!  3 kinds of queries can be answered directly in O(1), 
and 6 kinds of queries can be answered by a local traversal of the 
data structures around a facet or a vertex in O(k) 

!  Problem: When following edges, one has to test for each edge 
how it is oriented, in order to determine whether to follow 
n[c]cw or p[c]cw! 

Gabriel Zachmann
Optional



G. Zachmann 32 Boundary Representations Advanced Computer Graphics 24 July 2014 SS 

Doubly Connected Edge List   [Preparata & Müller, 1978] 

!  In computer graphics rather known as "half-edge data structure" 

!  Arguably the easiest and most efficient connectivity data structure 

!  Idea: 

!  Like the winged-edge DS, but with "split" edges 

! One half-edge (= entry in the edge table) represents only one direction  
and one "side" of the complete edge 

!  The pointers stored with each half-edge: 

-  Start (org) and end vertex (dest) 

-  Incident face (on the left-hand side) 

-  Next und previous edge (in traversal order) 

-  (Originating vertex can be omitted,  
because e.org = e.twin.dest) 

e.org 

e.prev 

e 

e.face 

e.twin 
e.dest 

e.next 
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!  Abstract notation: 

!  1 or 2 pointers to vertices per edge, 
epending on whether or not a pointer to 
the originating vertex (org) is stored with e 

!  Requires twice as many entries in the edge 
table as the winged-edge DS 

V F 

E 

1 1 (2) 

2 

1 1 



G. Zachmann 34 Boundary Representations Advanced Computer Graphics 24 July 2014 SS 

Example (Here in CW Order!) 

0

V0 V1 

v2 

v4 v5 

v6 v7 

v3 

12 7

6

5

3

4 8

9

15 

12 

13 
14 

11 

16 

17 
18 

19 

20 

10 

21 
22 

23 

Facets 
0    e20 
1    e4 
2    e0 
3    e15 
4    e16 
5    e8  

List of Vertices 
v     coord   e 
0    0.0    0.0  0.0  0 
1    1.0  0.0  0.0  1 
2    1.0  1.0  0.0  2 
3    0.0  1.0  0.0  3 
4    0.0  0.0  1.0  4 
5    1.0  0.0  1.0  9 
6    1.0  1.0  1.0  13 
7    0.0  1.0  1.0  16 

List of Half-Edges 
e    org     next  prv    twin    e    org     next  prv    twin 
0    0         1        3          6      12    2          13     15     10 
1    1         2        0          11    13    6          14     12     22 
2    2         3        1  15    14    7          15     13     19 
3    3         0        2  18    15    3          12     14     2 
4    4         5        7  20    16    7          17     19     21 
5    5         6        4   8     17    4          18     16     7 
6    1         7        5   0     18    0          19     17     3 
7    0         4        6  17    19    3          16     18     14 
8    1         9       11   5     20    5          21     23     4 
9    5        10       8  23    21    4          22     20     16 
10  6        11       9  12    22    7          23     21     13 
11  2         8       10   1     23    6          20     22     9 Also note the demo on 

http://www.holmes3d.net/graphics/dcel/  



G. Zachmann 35 Boundary Representations Advanced Computer Graphics 24 July 2014 SS 

!  Visualization for a quad mesh: 
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Invariants in a DCEL 

!  Here, we will use the "functional notation", i.e.,  
twin(e) = e.twin 

!  Invariants (= axioms in an Abstract Data Type "DCEL"): 

!  twin( twin(e) ) = e ,  if the mesh is closed 

!  org( next(e) ) = dest(e) 

!  org(e) = dest( twin(e) )       [if twin(e) is existing] 

!  org( v.edge ) = v                 [v always points to a leaving edge!] 

!  etc. … 

Gabriel Zachmann
Optional
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Face  and Vertex Cycling 

!  Given: a closed, 2-manifold mesh 

!  Wanted: all vertices incident to a given face f   

!  Algorithm: 

!  Running time is in O(k) , with k = # vertices of f 

f 

e 

e_start = f.edge 
e = e_start 
repeat 
  output e.dest 
  e = e.next 
until e == e_start 
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!  Task: report all vertices adjacent to a given vertex v 

!  Algorithm (w.l.o.g., v points to a leaving edge): 

!  Running time is in O(k) , where k = # neighbours of v 

e_start ← v.edge 
e ← e_start 
repeat 
  output e.dest 
  e ← e.twin.next 
until e == e_start 

v 

e 
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!  Terminology: a feature = a vertex or an edge or a facet 

!  Theorem:  
A DCEL over a 2-manifold mesh supports all incidence and 
adjacency queries for a given feature in time O(1) or O(k), where 
k = # neighbours. 

!  Crucial property:  
the DCEL must be proper 

C
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Limitations / Extensions of the DCEL 

!  A DCEL can store only meshes that are ... 
1.  two-manifold and 

2.  orientable, and  

3.  the polygons of which do not have "holes"! 

!  Extensions: lots of them, e.g. those of Hervé Brönnimann 
!  For non-2-manifold vertices, store several pointers to incident edges 

!  Dito for facets with holes  

!  Yields several cycles of edges for such vertices/faces 

Fig. 2. An illustration of (a) facets with holes, (b) outer boundary, and (c) singular vertices.

I8. If a HDS supports facets, and satisfies invariants I1–I4, then facet(h)=facet(g)
for any halfedges h, g that belong to the same boundary cycle.

2.4 Vertex and Facet Links

Even though our HDS may support vertices or facets, we may or may not want to
allocate storage from each vertex of facet to remember one (perhaps all) the incidents
halfedges. We say that a vertex-supporting HDS is source-linked if it provides a pointer
source_cycle(v) to a halfedge whose source is the vertex v, and that it is target-linked
if it provides a pointer target_cycle(v) to a halfedge whose source is the vertex v. A
facet-supporting HDS is facet-linked if it provides a pointer boundary_cycle(f) to a
halfedge on the boundary of any facet (in which case it must also provide the reverse
access facet(h) to the facet which is incident to a given halfedge h). It is possible to
envision use of both vertex- and facet-linked HDS, and non-linked HDS. The following
invariants guarantee the validity of the HDS.
I9. If a HDS supports vertices, is source-linked, and satisfies Invariants I1–I7, then

source(source_cycle(v))=v for every vertex v.
I10. If a HDS supports vertices, is target-linked, and satisfies Invariants I1–I7, then

target(target_cycle(v))=v for every vertex v.
I11. If a HDS supports facets, is facet-linked, and satisfies Invariants I1–I6 and I8,

then facet(boundary_cycle(f))=f for every facet f.

2.5 HDS with Holes in Facets and Singular Vertices

An HDS may or may not allow facets to have holes. Not having holes means that
each facet boundary consists of a single cycle; it also means that there is a one-to-
one correspondence between facets and abstract facets. In a HDS supporting holes in
facets, each facet is required to give access to a hole container.2 This container may be
global to the HDS, or contained in the facet itself. Each element of that container need
only point to a single halfedge.

In a facet with holes, one of the cycles may be distinguished and called the outer
boundary; the other holes are the inner holes. This is only meaningful for plane struc-
ture (see Figure 2(b)), where the outer boundary is distinguished by its orientation
2 The container concept is defined in the C++ STL.
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A DCEL Data Structure for Non-2-Manifolds 

!  Directed Edge DS: extension of half-edge DS for meshes that are 
not 2-manifold at just a few extraordinary places 
 
 
 

!  Idea:  

!  Store pointers to other edges (e.next, e.prev, v.edge, f.edge) as integer 
indices into the edge array 

!  Use the sign of the index as a flag for additonal information 

!  Interpret negative indices as pointers into additonal arrays, e.g., 

-  a list of all edges eminating from a vertex; or 

-  the connected component accessible from a vertex / edge 
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!  Why does the conventional DCEL fail for the following example? 

v
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Combinatorial Maps 

!  Remark: winged-edge and DCEL data structures are (simple) 
examples of so-called combinatorial maps 

!  Other combinatorial maps are: 

! Quad-edge data structure (and augmented quad-edge) 

! Many extensions of DCEL 

!  Cell-chains, n-Gmaps  
(like DCELs that can be extended to n-dimensional space) 

! Many more … 
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The Euler Equation 

!  Theorem (Euler's Equation): 
Let V, E, F  = number of vertices, edges, faces 
in a polyhedron that is homeomorph to a sphere.  

   Then,  

!  Examples: 

V = 8 
E = 12 
F = 6 

V = 8 
E = 12+1 
F = 6 +1 

V = 8+1 
E = 12+1+1 
F = 6 +1 

V � E + F = 2
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Proof (given by Cauchy) 

!  Given: a closed mesh (Polyhedron) 

!  First idea: 

!  Remove one facet (yields an open mesh; the border is exactly the edge 
cycle of the removed facet) 

!  Stretch the mesh by pulling its border apart until it becomes a planar 
graph (works only if the polyhedron is homeomorph to a sphere) 

!  It remains to show: 

!  Second idea: triangulate the graph (i.e., the mesh) 

!  Draw diagonals in all facets with more than 3 vertices 

!  For the new feature count we have 

V � E + F = 1

V � � E � + F � = V � (E + 1) + (F + 1) = V � E + F
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!  The graph has a border; triangles have 0, 1, or 2 "border edges" 

!  Repeat one of the following two transformations: 

!  If there is a triangle with exactly one border edge, 
remove this triangle ; it follows that 

!  If there is a triangle with exactly two border edges, 
remove the triangle ; it follows that 

!  Repeat, until only one triangle remains 

!  For that triangle, the Euler equation is obviously correct 

!  Because each of the above transformations did not change the value of 
V-E+F, the equation is also true for the original graph, hence for the 
original mesh 

    

V � � E � + F � = V � (E � 1) + (F � 1) = V � E + F

V � � E � + F � = (V � 1)� (E � 2) + (F � 1) = V � E + F
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Application of Euler's Equation to Meshes 

!  Euler's Equation � relationship between #triangles and  
#vertices in a closed triangle mesh 

!  In a closed triangle mesh, 
each edge is incident to exactly 2 triangles , so 

!  Plug this into Euler's equation: 

!  Therefore, for large triangle meshes 

3F = 2E

2 = V � 3

2
F + F ⇥ 1

2
F = V –2

F � 2V
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Application of Euler's Equation to the Platonic Solids 

!  Definition Platonic Solid:  
A convex polyhedron consisting of a number of  congruent & regular 
polygons, with the same number of faces meeting at each vertex. 

!  Regular polygon = all sides are equal, all angles are equal 

!  Theorem (Euklid): 

 There are exactly five platonic solids. 



G. Zachmann 59 Boundary Representations Advanced Computer Graphics 24 July 2014 SS 

Proof 

!  All facets have the same number of edges = n;  therefore: 

!  All vertices have the same number of incident edges = m; 
therefore 

!  Plugging this into Euler's equation: 

!  Yields the following condition on m and n: 

2E = nF � F =
2

n
E

2E = mV � V =
2

m
E

2 = V � E + F =
2

m
E � E +

2

n
E ⇥ 2

E
=

2

m
� 1 +

2

n

1

m
+

1

n
=

1

2
+

1

E
>

1

2
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!  Additional condition: m and n both must be ≥ 3 

!  Which {m,n} fulfill these conditions: 

 {3,3}       {3,4}      {4,3}      {5,3}      {3,5} 
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Digression: Platonic Solids in the Arts 

!  The platonic solids have been known at least 1000 years before 
Plato in Scotland 



G. Zachmann 62 Boundary Representations Advanced Computer Graphics 24 July 2014 SS 

Portrait of Johannes Neudörfer and his Son 
Nicolas Neufchatel, 1527—1590 

Dürer: Melencolia I 
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The Euler Characteristic 

!  Caution: the Euler equation holds only for polyhedra, that are 
topologically equivalent to a sphere! 

!  Examples: 

!  But: the quantity V-E+F stays the same no matter how the 
polyhedron is deformed (homeomorph)  
� so the quantity V-E+F is a topologic invariant 

Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron 

V-E+F 6 - 12 + 7 = 1 12 - 24 + 12 = 0 12 - 24 + 10 = -2 
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!  Definition Euler characteristic: 

!  Examples: 

2 0 -2 

0 0 -4 

� = V � E + F
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!  The Euler characteristic is even independent of the tessellation! 

Euler Poincaré Characteristic: 2/5Euler-Poincaré Characteristic: 2/5

�Euler-Poincaré characteristic Ȥ(M) = V-E+F is 
independent of tessellation.

V=24, E=48, F=22
Ȥ(M) =V-E+F=-2

V=16, E=32, F=16 V=28, E=56, F=26V=16 E=36 F=20

11

V 16, E 32, F 16
Ȥ(M) =V-E+F=0

V 28, E 56, F 26
Ȥ(M) =V-E+F=-2

V 16, E 36, F 20
Ȥ(M) =V-E+F=0

V = 16 
E = 32 
F = 16 
! = 0  = 0 

V = 16 
E = 36 
F = 20 
! = 0  = 0 

V = 28 
E = 56 
F = 26 
! = -2  = -2 

V = 24 
E = 48 
F = 22 
! = -2  = -2 



G. Zachmann 68 Boundary Representations Advanced Computer Graphics 24 July 2014 SS 

!  Theorem: 
Assume we are given a closed and orientable mesh consisting of 
just one shell. Then the following holds: 
The Euler characteristic ! = 2, 0, -2, …   �  = 2, 0, -2, …   � 
the mesh is topologically equivalent to a sphere, a torus, a 
double torus, etc. … 
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Homeomorphisms: 3/3Homeomorphisms: 3/3

�Hence, any orientable 2-manifold mesh without 
boundary is homeomorphic to a sphere with m
handles (i.e., genus m), where m t 0.

17

The Euler-Poincaré Equation 

!  Generalization of the Euler equation for 2-manifold, closed 
surfaces (possibly with several components): 

!  G = # handles,  S = # shells (Schalen / Komponenten) 

!  G is called "Genus" 

!  Handle (hole, Loch): a piece of string inside a 
handle cannot be shrunk towards a single point 

!  Shell (Schale): by walking on the surface of a shell, each point can be 
reached  

! We can even cut out so-called "voids" (Aushöhlungen) by "inner" 
shells 

!  There are many more generalizations! 

V � E + F = 2(S � G )
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!  Examples: 

!  V = 16,  E = 28,  F = 14,  S = 1,  G = 0: 
 V - E + F = 2 = 2(S - G) 

!  V = 16,  E = 32,  F = 16,  S = 1,  G = 1: 
 V - E + F = 0 = 2(S - G) 

!  V = 16+8,  E = 32+12,  F = 16+6, G = 1,  S = 2: 
 V - E + F = 2 = 2(S - G) 
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!  Beware: sometimes it is not easy  
to determine the genus! 

!  Example: genus = 2 

!  "Proof": deform topologically equivalently, until the genus is obvious 

1. 2. 3. 
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!  What is the genus of this object? 

Global Topology: GenusGlobal�Topology:�Genus

GenusGenus:�:�
Half�the�maximal�number�of�closed�paths�that�do�not�disconnect�

the�mesh�(=�the�number�of�holes)

Genus 1 Genus 2Genus 0 Genus ?
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